Defining Nanomaterial Entity Properties If you selected one of the Nanomaterial Entity Types listed in the following table, the **Properties** section opens, and you must fill in additional information. | Nanomaterial
Entity Type | Properties to Complete | |-----------------------------|--| | Biopolymer | If you are defining a Nanomaterial Entity, enter the Name of the biopolymer. Select the Biopolymer type of antibody functionalizing entity for this sample. Unknown macro: 'hide' Using the appropriate format, enter the complete Sequence of the biopolymer. | | Carbon
Nanotube | Enter the Average Length of the nanotube. Enter the Length Unit of measurement for the average length measurement of the nanotube. The spatial position or orientation of functional groups located within a molecule. Enter information about the Chirality in the nanotube and its effect on the orientation of functional groups located on the particle. Enter the measurement of the nanotube Diameter, as measured from one side of the tube wall through the center of the nanotube to the opposite point on the circumference. Enter the Diameter Unit of measurement for the nanotube diameter. Select the appropriate description of the nanotube Wall Type. DWNT (Double-Wall Nanotube) Nanotube wall consists of two layers of graphitic carbon. MWNT (Multiple-Wall Nanotube) Nanotube consists of single-walled nanotubes layered inside each other SWNT (Single-wall Nanotube) Wall consists of a single layer of graphitic carbon | | Dendrimer | Pranches are molecules that branch off of the core (like tree branches). Penter a description that represents the number of Branches in the dendrimer. Generations are shells layered on the core of a dendrimer. Dendrimers consist of layers of chemical shells built on a core module. Each shell consists of two chemicals in the same order (A-B) and each shell is called a generation. The generations are labeled in decimal to illustrate the shell layering/consistency. For example, Generation 2.5 (G2.5) = 1 shell of A-B (1), surrounded by a second shell of A-B (2), topped off with only one chemical A within the shell (.5). As such, the layering structure would be (A-B, A-B, A) = 2.5. List the Generations reflected in this dendrimer. | | Emulsion | Specify whether the emulsion Is Polymerized (required). Polymerization consists of enzymatic reactions that link a series of monomers, forming a polymerized compound (polymer), usually of high molecular weight, by combination of simpler molecules (monomers). Enter the name of the polymer (Polymer Name) suspended in the emulsion (required). | | Fullerene | Enter the Average Diameter measurement, as measured from one side of the nanoparticle through its center to the opposite point on the circumference. Enter the Average Diameter Unit of measurement for the fullerene diameter. Enter the Number of Carbon molecules comprising the fullerene. | | Liposome | Enter the name of the liposome polymer (Polymer Name). Polymerization consists of enzymatic reactions that link a series of monomers, forming a polymerized compound (polymer), usually of high molecular weight, by combination of simpler molecules (monomers). Specify Yes or No to indicate whether the liposome Is Polymerized or not (require). | | Polymer | In Initiator, enter the agent that initiated the polymerization. Examples are free radicals or peroxide. Crosslinking is a covalent bond between two polymers or two different regions of the same polymer. Specify Yes or No to indicate whether the polymer Is Crosslinked. In Crosslink Degree, enter the percentage level of covalent linkage in the polymer. |