LexBIG 1.0.2 Developer's Technical Guide

Version 1.0.2

Contents of this Page

LexBIG Software User Agreement
Contacts and Support
Overview
Organization
Getting Started
Document Text Conventions
Overview of the Software
© What's Inside
© A Simple Example
" Establish the Development Environment
= Write and Compile Programs
= Deploy and Run
O System Requirements
© Software and Hardware Dependencies
o Security and Security Management
® Systems and Architecture
© The Basics
" What is LexGrid?
" What is LexBIG?
© Software Overview
O LexGrid Model
= Qverview
® Code Systems
® Concepts
" Relations
© LexBIG Model
" Overview
® Concept Resolution
O LexBIG Services
= Qverview
© caGRID Hosting
" Overview
" Specification
© Service Management Subsystem
" Overview
© Metadata and Discovery Subsystem
" Qverview
© Query Subsystem
" Overview
¢ Information Models
O LexGrid Model
® CodingSchemes
= Concepts
" Relations
" Naming
© LexBIG Model Extensions
" Core
" |nterfaceElements
= NCIHistory

® |exBIG APIs
© Overview
o Core Services
© Service Extensions
® Query Extensions
Load Extensions
Export Extensions
Index Extensions
® Generic Extensions
o Utilities
" |terators
= Additional Utility Classes
© Examples and Recommendations for Use
® Concept Resolution
" Service Metadata Retrieval
® Combinatorial Queries
" Additional Resources
O Exercising the API - The LexBIG GUI
® Launching the GUI
Overview
Creating New Queries
Customizing Queries
Working with Code Sets
Working with Code Graphs
" Viewing Query Results
® Appendix A References
® Appendix B Included Materials
© Components
® Appendix C Additional Terms and Conditions

Unable to render {include} The included page could not be found.

LexBIG Software User Agreement
October 30, 2006

Usage of Content

THIS PRODUCTS MAKES AVAILABLE SOFTWARE, DOCUMENTATION, INFORMATION AND/OR OTHER MATERIALS (COLLECTIVELY
"CONTENT"). USE OF THE CONTENT IS GOVERNED BY THE TERMS AND CONDITIONS OF THIS AGREEMENT AND/OR THE TERMS AND
CONDITIONS OF LICENSE AGREEMENTS OR NOTICES INDICATED OR REFERENCED BELOW. BY USING THE CONTENT, YOU AGREE THAT
YOUR USE OF THE CONTENT IS GOVERNED BY THIS AGREEMENT AND/OR THE TERMS AND CONDITIONS OF ANY APPLICABLE LICENSE
AGREEMENTS OR NOTICES INDICATED OR REFERENCED BELOW. IF YOU DO NOT AGREE TO THE TERMS AND CONDITIONS OF THIS
AGREEMENT AND THE TERMS AND CONDITIONS OF ANY APPLICABLE LICENSE AGREEMENTS OR NOTICES INDICATED OR REFERENCED
BELOW, THEN YOU MAY NOT USE THE CONTENT.

Applicable Licenses
Unless otherwise noted, content is provided to you under terms and conditions of the following agreement:

Copyright: (c) 2004-2006 Mayo Foundation for Medical Education and
Research (MFMER). Al rights reserved. MAYO, MAYO CLINIC, and the
triple-shield Mayo |1 ogo are trademarks and service marks of MFMER

Except as contained in the copyright notice above, the trade nanes,
trademarks, service marks, or product nanes of the copyright holder shall
not be used in advertising, pronotion or otherwise in connection with
this Software without prior witten authorization of the copyright holder.
Li censed under the Eclipse Public License, Version 1.0 (the "License");
you may not use this file except in conpliance with the License.

You nay obtain a copy of the License at

http://ww. eclipse.org/legal/epl-v10. htm

Unl ess required by applicable law or agreed to in witing, software

di stributed under the License is distributed on an "AS | S" BASI S,

W THOUT WARRANTI ES OR CONDI TI ONS OF ANY KI ND, either express or inplied.
See the License for the specific |anguage governing permni ssions and
limtations under the License.

(D Note

Content includes redistribution of additional 3rd party software modules, placed in the /runtime/extlib folder of the product root directory. Each
module is accompanied by a license file that identifies specific terms of use and redistribution that may differ from the terms listed above.
Modules include, but are not limited to, those listed in the appendix of this document.

IT IS YOUR OBLIGATION TO READ AND ACCEPT ALL SUCH TERMS AND CONDITIONS PRIOR TO USE OF THE CONTENT.

Contacts and Support

Type Contact

Training contact = VKC VocabKC@mayo.edu
Developer Division of Biomedical Informatics Mayo Clinic
200 1st ST SW

Rochester, MN 55905
informatics@mayo.edu

Facilities Pertinent to Software Teams

Resource URL Description

Bug Tracking and feature requests Bug Reports and Feature Requests To Include JIRA

Discussion Forums and Project Wiki This wiki Vocabulary Knowledge Center

mailto:VocabKC@mayo.edu
mailto:informatics@mayo.edu
https://wiki.nci.nih.gov/pages/viewpage.action?pageId=63996343
https://wiki.nci.nih.gov/pages/viewpage.action?pageId=63996710

Architecture and Requirements specifications

Overview

https://gforge. nci.nih.gov/scm ?group_i d=491

LexEVS SVN repository

This manual provides an introduction to the architecture, software components, and application programming interfaces (APIs) of the LexGrid Vocabulary
Services for caBIG® project (hereafter referred to as the 'LexBIG' project).

Organization

Section Name
Overview of the Software
Systems and Architecture
Information Models
LexBIG APIs
Appendix A - References

Appendix B - Included
Materials

Getting Started

Section Contents

Provides an overview of the deployed software packages and describes a typical development/deployment scenario.

Describes the functional pieces of the LexBIG runtime and how they interact with each other and calling programs.

Describes formal models related to LexBIG content, including XML schema and UML representations.

Describes the application programming interfaces provided by the LexBIG runtime.

References to formal publications and additional online resources.

Provides detailed information of additional software components packaged with the LexBIG distribution and their

usage.

Recommendations for approaching this guide:

Review the introduction to learn about the manual structure

Review Overview

of the Software for a brief overview of the software

L]

L]

® Review the source code distributed as examples and automated tests, and correlate to the LexBIG APIs as described in this guide.
® Based on these techniques, try to write example programs of your own.

Document Text Conventions

The following table shows various typefaces to differentiate between regular text and menu commands, keyboard keys, and text that you type. This
illustrates how conventions are represented in this guide.

Convention

Bold & Capitalized
Command

Capitalized
command>Capitalize
d command

Speci al
typestyle
Boldface type

Italics

Italic boldface type

0]

Description

Indicates a Menu command

Indicates Sequential Menu commands

Used for filenames, directory names, commands, file listings, source code examples
and anything that would appear in a Java program, such as methods, variables, and
classes.

Options that you select in dialog boxes or drop-down menus. Buttons or icons that you
click.
Used to reference other documents, sections, figures, and tables.

Text that you type

Highlights a concept of particular interest

Example

Admin > Refresh

URL_definition ::=
url _string

Select the file and click the Open
button.

caCORE Software Development
Kit 1.0 Programmer's Guide

In the New Subset text box, enter P
roprietary Proteins.

@ Note

This concept is used
throughout the
installation manual.

Highlights information of which you should be particularly aware.
(D Warning

Deleting an object will

permanently delete it
from the database.

Overview of the Software

This section assumes that the LexBIG software has been installed, per instructions provided by the LexBIG Administrator's Guide.

What's Inside

This section describes the location and organization of installed materials. Following installation, many of the following hierarchy of files and directories will
be available (some features are optionally installable):

<located in the LexBIG installation root directory>

Directory

adm n

doc

/ doc
/j avadoc

| exanpl es

| exanpl es

/resourc
es

/ gui

/1 ogs

/resourc
es

Description of Content

Installed by default. This directory provides a centralized point for command line scripts that can be executed to perform administrative
functions such as the loading, activation/deactivation, and removal of vocabulary resources.

@ Note

Programmers may be interested in the code used to execute these functions. In that light, it is perhaps noteworthy to mention
that this directory does not contain any source or binary code, only the scripts used to launch the admin functions.

Object code used to carry out these functions is included directly in the LexBIG runtime components. Source code is included in the
Isource directory in the | bAdm n-src. j ar (described below).

Optionally installed. This directory provides documentation related to LexBIG services, configuration, and execution. This guide is
distributed in the / doc top-level directory.

Of special interest to programmers. This directory provides the generated javadoc for model classes and public interfaces available to
LexBIG programmers. Also included with each object representation is a UML-based model diagram that shows the object, its attributes
and operations, and immediately linked objects. The diagrams work to provide clickable navigation through the javadoc materials.

Optionally installed. This directory provides a small number of example programs.

Refer to the README.txt file in this directory for instructions used to configure and run the example programs. The examples are
intended to provide a limited interactive demonstration of LexBIG capabilities. Source and object code for the example programs is
provided under the / exanpl es/ or g subdirectory. Source materials are also centrally archived under the / sour ce directory in the file | b
Exanpl es-src.jar.

Contains sample vocabulary content for reference by the example programs; use the / exanpl es/ LoadSanpl eDat a command-line
script to load.

Optionally installed. This folder contains programs and supporting files to launch the LexBIG Graphical User Interface (GUI). The GUI
provides convenient centralized access to administrative functions as well as support to test and exercise most of the LexBIG API. The
GUI is launched using a platform-specific script file in the /gui directory. The name of the platform (e.g. Windows, OSX, etc) is included in
the file name. Program source and related materials are centrally archived under the /source directory in the file | bGUI - src. j ar.

Default location for log files, which can be modified by the LOG_FI LE_LOCATI ON entry in the confi g. pr ops file (see next section).

Installed by default. This directory contains resources referenced and written directly by the LexBIG runtime. It should, in general, be
considered off-limits to modify or remove the content of this directory without specific guidance and reason to do so. Files typically stored
to this location include the vocabulary registry (tracking certain metadata for installed content) and indexes used to facilitate query over
the installed content. One file of particular interest in this directory is the / r esour ces/ confi g/ confi g. pr ops file. This file controls
access to the database repository and other settings used to tune the LexBIG runtime behavior. Contents of this file should be set
according to instructions provided by the LexBIG Administrator's Guide.

/runtime | Installed by default. This directory contains a Java archive (.jar) file containing the combined object code of the LexBIG runtime, LexBIG
administrative interfaces, and any additional code they are dependent on. All required code for execution of LexBIG administrative and
runtime services is installed to this directory.

@ Note

Java programmers writing to the LexBIG runtime interfaces should always include the following files in their java classpath
(listed in order of inclusion):

® /runtine/lbPatch.jar -Inthe course of the product lifecycle, it is possible that smaller fixes will be introduced as a
patch to the initially distributed runtime. Including this file in the classpath ensures automatic accessibility to the calling
program without requiring adjustment. All patches are cumulative (there is at most one patch file introduced per release;
all patch-level fixes are cumulative).

® /runtinme/l bRuntine.jar - This is the standard runtime file, including all LexBIG and dependency code required for
program execution except for SQL drivers (see next).

/runtime | The JDBC drivers used to connect to database repositories are not included in the | bRunt i me. j ar . Instead, the runtime scans this
/'sql driv | directory for the drivers to include. This can be overridden by path settings in the conf i g. pr ops file.

ers
@ Note

While the LexBIG software package ships with JDBC drivers to certain open source databases such as mySQL and
PostgreSQL, this folder provides a mechanism to introduce updated drivers or to add drivers for additional supported database
systems. For example, the Oracle database is supported by the runtime environment. However, the drivers are not
redistributed with the LexBIG software. To run against Oracle, an administrator would add a jar with the appropriate JDBC
driver to this directory and then reference it in the conf i g. pr ops settings.

/runtime | Optionally installed. Due to license considerations for additional materials (as described by the | i cense. pdf and | i cense. t xt filesin

- the install directory), the cumulative runtime provided in the | bRunt i ne. j ar is not redistributable. This directory contains a finer grain

conponen | breakdown of object code into logical components and 3rd party inclusions. All components are redistributable under their own license

ts agreements, which are provided along with each archive. The top-level of the / r unt i ne- conponent s directory contains all code
produced for the LexBIG project in a single lexbig.jar file.

@ Note

These files are included as an alternative to the | bRunt i ne. j ar for code execution and redistribution. There is no need to
include any of these files in the Java classpath if you are already including the | bPat ch. j ar and | bRunt i ne. j ar described
above.

/runtime | This subdirectory includes all 3rd party code redistributed with the LexBIG runtime, along with respective license agreements.

conponen

ts

lextlib

/ source Archive source directories and files described in further detail in the next table below.

/test Optionally installed. This directory provides an automated test bucket that can be used by System Administrators to verify node

installation. Note that the / runt i me/ confi g/ confi g. pr ops file must still be configured for database access prior to invoking the test
bucket. Testcases are launched via the Test Runner command-line script. Several reporting options are provided and are further
described in the LexBIG Administrator's Guide.

@ Note

Programmers may be interested in referencing the source code for the test programs. These are provided in the /source
directory (described in the next table).

/uninsta | Contains an executable jar that can be invoked by an administrator to uninstall files originally introduced by the LexBIG installation.
I'ler

The following table describes the source subdirectories and the associated content.

/ sour ce Subdirectories Description of Content

| bAdmi n-src Source for LexBIG administrative interfaces.

| bExanpl es-src Corresponds to programs provided in the / exanpl es directory (described above).

I bGQUI -src Source for the Graphical User Interface.

I bl npl -src Source for implementation classes fulfilling the LexBIG service interfaces and interacting with models.

I bl nterfaces-src Source defining service-level interfaces for the LexBIG runtime.

| bModel -src Source defining LexBIG-specific extensions to the LexGrid information model.

| bTest-src Corresponds to automated test programs provided in the / t est directory (described in the table above).
| gConverter-src Source containing services to convert data into various formats.

I gl ndexer-src Source for the services used in indexing databases.

| gvbdel -src Source defining the LexGrid Model.

| gModel . enf -src Source for the EMF representation of the LexGrid Model.

| gRDFConverter-src Framework for reading different types of ontology resources.

| gResour ceReader -src | Source for handling RDF conversions.

lgWtility-src Source for LexBIG utility programs.

A Simple Example

This section describes the basic steps involved in writing and deploying a program that directly invokes the LexBIG Java software components.

Establish the Development Environment

Installation should first be performed to the host server according to procedures described in the LexBIG Administrator's Guide. After installation,
developers may wish to copy the components required for program development to a local environment. Installed components of interest include the
following:

® /runtine/lbRuntine.jar - This archive contains the combined code for all executable code, as described earlier in this section. Adding this
file to the Java classpath during development will allow compilation of source code.

® /runtine-conponent s/ | exbig.jar - While this jar does not include all code required for runtime execution, it does provide a sufficient
alternative to the IbRuntime.jar file for purposes of program compilation.

® /source/lb*.jar, Ig*.jar - Contain the source code for the LexBIG interfaces. Many development environments (e.g. Eclipse) will provide
the ability to link these files to the object code archives. This allows for improved reference materials during program development.

Write and Compile Programs

Example source is provided below for a simple program that lists the available coding schemes (containers for vocabulary concepts and relations)
registered to a LexBIG server node:

inport org.LexGid.LexBl G Dat avbdel . Col | ecti ons. Codi ngScheneRender i nglLi st ;
import org.LexGid.LexBl G Dat aMbdel . I nterfaceEl enents. Codi ngSchenmeRender i ng;
import org.LexGid.LexBlIG Inpl.LexBlGServicel npl;

inport org.LexGid.LexBl G LexBI GService. LexBI GServi ce;

import org.LexGrid.LexBIG Utility.ObjectToString;

public class ListCodeSystens {
public static void main(String[] args) {
try {
LexBl GService | bs = new LexBl GServicel npl ();
Codi ngScheneRenderi ngLi st schenes = | bs. get Support edCodi ngSchenes() ;
for (Codi ngSchemeRendering csr
schenes. get Codi ngScheneRendering())
System out. println(

oj ect ToString.toString(csr.get Codi ngSchemeSunmary()));
} catch (Exception e) {
e.printStackTrace();
}

@ Note

Sun Java Development Kit (JDK) level 5.0 or above is required for program development. The code base has not been updated to
accommodate Java 6.

Deploy and Run

Continuing the example above, the compiled Li st CodeSyst ens. cl ass file should be copied to the LexBIG server system for invocation. Currently
LexBIG services are invoked through direct programmatic access, though future direction is to provide additional web or grid-level service invocation in
support of multi-tier scenarios. Additional description of system components and deployment scenarios is provided in the section, Systems and Architecture.

As with development, program execution requires the Sun Java JDK (or JRE) version 5.0 or above. Assuming the Java command is accessible in the path
and the ListCodeSystems class file is installed to a directory of choice {pgm-dir} and the LexBIG is installed to {lexbig-dir}, the program can be invoked
through the following command line interface:

java -cp {lexbig-dir}/runtinme/lbPatch.jar:{lexbig-dir}/runtine/lbRuntine.jar:{pgmdir} ListCodeSystens

@ Note

The above example uses syntax for a Linux installation; Windows users would use alternate syntax for file separator ('\') and classpath
separator (';').

As mentioned previously, it is considered good practice for developers to include the | bPat ch archive in their class path, as it is designed to introduce
smaller fixes without requiring download and redeployment of the complete (and much larger) runtime jar.

System Requirements

Refer to the LexBIG Administrator's Guide for minimum recommended requirements for the system hosting the LexBIG runtime. There are no unique
requirements for development systems other than those enforced by the development tools being used (see next section).

Software and Hardware Dependencies

Refer to the LexBIG Administrator's Guide regarding software and hardware dependencies for the system hosting the LexBIG runtime. Development
systems are required to install the Sun Java Development Kit (JDK) or Java Runtime Environment (JRE) version 5.0 or above. In addition, an integrated
development environment (IDE) such as Eclipse or NetBeans is recommended for program development.

Security and Security Management

The LexBIG runtime relies on standard operating system and database infrastructure to provide security of data and access to runtime services. Any
additional requirements are noted in the LexBIG Administrator's Guide. There are no unique security requirements for development systems.

Systems and Architecture

This section describes the functional pieces of the LexBIG runtime and how they interact with each other and calling programs. Topics include a high level
description of the LexGrid information model, LexBIG model and service extensions, and current/future deployment scenarios.

The Basics

What is LexGrid?

LexGrid is an initiative of the Mayo Clinic Division of Biomedical Informatics that focuses on the representation, storage, and dissemination of vocabularies.
This effort centers on, but is not limited to, the domain of medical vocabularies and nomenclatures. Focal points of the LexGrid project include the
development and promotion of standards, tools, and content that:

* Provide flexibility to represent yesterday's, today's and tomorrow's terminological resources using a single information model.

® Provide the ability for these resources to be published online, cross-linked, and indexed.

® Provide standardized building blocks and tools that allow applications and users to take advantage of the content where and when it is needed.
® Provide consistency and standardization required to support large-scale terminology adoption and use.

What is LexBIG?

LexBIG is a more specific project that applies LexGrid vision and technologies to requirements of the caBIG® community. The goal of the project is to build
a vocabulary server accessed through a well-structured application programming interface (API) capable of accessing and distributing vocabularies as
commodity resources. The server is to be built using standards-based and commaodity technologies. Primary objectives for the project include:

® Provide a robust and scalable open source implementation of EVS-compliant vocabulary services. The API specification will be based on but not
limited to fulfillment of the caCORE EVS API. The specification will be further refined to accommodate changes and requirements based on
prioritized needs of the caBIG® community.

® Provide a flexible implementation for vocabulary storage and persistence, allowing for alternative mechanisms without impacting client
applications or end users. Initial development will focus on delivery of open source freely available solutions, though this does not preclude the
ability to introduce commercial solutions (e.g. Oracle).

® Provide standard tooling for load and distribution of vocabulary content. This includes but is not limited to support of standardized representations
such as UMLS Rich Release Format (RRF), the OWL web ontology language, and Open Biomedical Ontologies (OBO) .

The goal for the initial year of development was to achieve the Bronze level of compatibility with regard to the caBIG® requirements. Silver-level
compatibility is being pursued.

Software Overview

LexBIG software architecture and implementation is designed to facilitate flexibility and future expansion. The following diagrams are intended to aid the
understanding of LexBIG service integration in context of the larger caBIG® universe and specific deployment scenarios.

The following diagram depicts the LexBIG vision. Individual Cancer Centers will be able to use the existing set of caCORE EVS services. If desired, local
instances of vocabularies can be installed.
Fartay
4 # @i liie Reples

e

r(,uu:nlﬁzpl:n —-,,\I

The following diagram depicts direct programmatic access (Java-to-Java access) to LexBIG functions. This is the primary deployment scenario for phase 1.

LexBIG Runtime

Direct Programmatic Access

Java Program JDedicaed Jvid

Java Procyam J Dedicatedd W

Jawa Program ! Ded cated JW

LexBIG Host

I Harcl 06 Ot

@ Note

It is not required that the database be located on the same system as the program runtime.

The following diagram depicts consolidated access through caCORE Enterprise Vocabulary Services (EVS) to a LexBIG vocabulary engine.

LexBIG Runtime
Consolidated Host — EVES Access

caB 0 Serwer f Java Runtime

<D

LexBIG Host

2 Mench 200 orfl

The primary goal is to provide a compatible experience for existing EVS browsers and client applications.

(D Note

This diagram shows the possible inclusion of a mediation layer between EVS and the LexBIG runtime.
This would be done to facilitate alternate communications with the LexBIG server (e.g. through web services as described below).

The LexBIG API is designed with Web and grid-level enablement in mind. The following diagram depicts deployments that wrap the current API to allow
the runtime to be accessed in a consolidated way through Web or grid services.

LexBIG Runtime
Consolidated Host = VwWeb Service Access

App Server fJava Runtime

el or Grid
Senrice
Clienk

LeBIG Host

2 MaEl I0s Dmit

LexGrid Model

Overview

The LexGrid Model is Mayo Clinic's proposal for standard storage of controlled vocabularies and ontologies. The LexGrid Model defines how vocabularies
should be formatted and represented programmatically, and is intended to be flexible enough to accurately represent a wide variety of vocabularies and
other lexically-based resources. The model also defines several different server storage mechanisms and a XML format. This model provides the core
representation for all data managed and retrieved through the LexBIG system, and is now rich enough to represent vocabularies provided in numerous
source formats such as OWL (NCI Thesaurus) and RRF (NCI MetaThesaurus).

Once the vocabulary information is represented in a standardized format, it becomes possible to build common repositories to store vocabulary content
and common programming interfaces and tools to access and manipulate that content. The LexBIG API developed for caBIG® is one such interface, and
is described in additional detail in LexBIG APIs.

Following are some of the higher-level objects incorporated into the model definition:

Code Systems

Each service defined to the LexGrid model can encapsulate the definition of one or more vocabularies. Each vocabulary is modeled as an individual code
system, known as a codingScheme. Each scheme tracks information used to uniquely identify the code system, along with relevant metadata. The
collection of all code systems defined to a service is encapsulated by a single codingSchemes container.

Concepts

A code system may define zero or more coded concepts, encapsulated within a single container. A concept represents a coded entity (identified in the
model as a concept) within a particular domain of discourse. Each concept is unique within the code system that defines it. To be valid, a concept must be
qualified by at least one designation, represented in the model as a property. Each property is an attribute, facet, or some other characteristic that may
represent or help define the intended meaning of the encapsulating concept. A concept may be the source for and/or the target of zero or more
relationships. Relationships are described in more detail in a following section.

Relations

Each code system may define one or more containers to encapsulate relationships between concepts. Each named relationship (e.g. "hasSubtype" or
"hasPart") is represented as an association within the LexGrid model. Each relations container must define one or more association. The association
definition may also further define the nature of the relationship in terms of transitivity, symmetry, reflexivity, forward and inverse names, etc. Multiple
instances of each association can be defined, each of which provide a directed relationship between one source and one or more target concepts.

Source and target concepts may be contained in the same code system as the association or another if explicitly identified. By default, all source and

target concepts are resolved from the code system defining the association. The code system can be overridden by each specific association, relation
source (associationlnstance), or relation target (associationTarget).

LexBIG Model

Overview

The LexBIG vocabulary model extends the LexGrid model to provide unique constructs or granularity required by caBIG® that are not present in the core
model. While many extensions exist, this document will focus on some of direct relevance to the high-level architecture.

Concept Resolution

LexBIG allows the service runtime to provide managed resolution of code-based objects that are referenced through LexBIG-specific lists and iterators
(mechanism that allow streaming of list content). These lists and iterators are typically returned when requesting sets or graphs of vocabulary terms
through the LexBIG API (described in LexBIG APIs). Some model components involved in the resolution process include:

® Concept Ref er ence - A globally unique reference to a concept code.

®* Resol vedConcept Ref er ence - A concept reference for which additional information has been resolved, including description and relationship
participation.

® Associ at edConcept - A concept reference that contains full detail in participation as a source or target of an association, including indications
of navigability and qualification.

@ Note

Formal representation of the LexGrid and LexBIG models are discussed in the section, Information Models.

LexBIG Services

This section describes architectural detail for services provided by the LexBIG system. These services are geared toward the administration, management,
and serving of vocabularies defined to the LexGrid/LexBIG information model. A system overview is provided, followed by a description of key subsystems
and components. Each subsystem is described in terms of its overall structure, formal model, and specification of key public interfaces.

Overview

The LexBIG Service is designed to run standalone or as part of a larger network of services. It is comprised of four primary subsystems: Service
Management, Service Metadata, Query Operations, and Extensions. The Service Manager provides administration control for loading a vocabulary and
activating a service. The Service Metadata provides external clients with information about the vocabulary content (e.g. NCI Thesaurus) and appropriate
licensing information. The Query Operations provide numerous functions for querying and traversing vocabulary content. Finally, the extensions
component provides a mechanism to extend the specific service functions, such as Loaders, or re-wrap specific query operations into convenience
methods. Primary points of interaction for programming include the following classes:

® LexBI GServi ce - This interface provides centralized access to all LexBIG services.

® LexBl GServi ceManager - The service manager provides a centralized access point for administrative functions, including write and update
access for a service's content. For example, the service manager allows new coding schemes to be validated and loaded, existing coding
schemes to be retired and removed, and the status of various coding schemes to be updated and changed.

caGRID Hosting

E [‘ Service Discovery
= L

calGEID Hosting Enwironment

vice Metadata

wrice MWManager

Overview
The LexBIG architecture provides the underpinnings LexBIG services to be made accessible through the caGRID environment in the future, where LexBIG

services might optionally be deployed in a caGRID Globus container. caGrid provides a Globus service for service registration and discovery. LexBIG
services deployed to the grid would be registered in the NCICB registry and be searchable through the NCICB index service.

Specification

Additional specifications related to the registration and discovery of LexBIG services in the caGRID environment will be included later phases of work in
concordance with caGRID 1.0. This is will be coordinated with caBIG® Architecture workspace designees.

Service Management Subsystem

rvice Administration

Overview

This subsystem provides administrative access to functions related to management and publication of LexBIG vocabularies. These functions are generally
considered to be reserved for LexBIG administrators, with detailed instructions on how to secure and carry out related tasks described by the LexBIG
Administrator's Guide.

This subsystem is further broken down into the following components:

® |Indexers- Vocabularies may be indexed to provide enhanced performance or query capabilities. Types of indexes incorporated into the LexBIG
system include but are not limited to the following:
O Lexical Match - for example, "begins-with" and "contains"
© Phonetic - allows for the ability to query based on "sounds-like" entry of search criteria.
o Stemming - allows for the ability to find lexical variations of search terms.
Index creation is typically bundled into the load process. Architecturally speaking, however, this capability is decoupled and extensible.
® Loaders- Vocabularies may be imported to the system from a variety of accepted formats, including but not limited to:
O LexGrid XML (LexBIG canonical format)
NCI Thesaurus, provided in Web Ontology Language format (OWL)
UMLS Rich Release format (RRF)
Open Biomedical Ontologies format (OBO)

o O O

As with indexers, the load mechanism is designed to be extensible from an architectural standpoint. Additional loaders can be supported by the
introduction of pluggable modules. Each module is implemented in the Java programming language according to a LexBIG-provided interface, and
registered to the loader runtime environment.

Metadata and Discovery Subsystem

1emme etadata

Overview
This subsystem provides information about accessible vocabularies, related licensing/copyright information, and registration/discovery of LexBIG services.

The ability to locate and resolve vocabulary metadata is fulfilled through the LexBIGService class. Metadata defined by the LexGrid information model is
resolved with each CodingScheme instance. Available metadata on each resolved scheme includes, but is not necessarily limited to, the following:

® License or copyright information
® Supported values (e.g. supported concept status, language, property names, etc)
® Mappings from names used locally to globally unique URNs

In addition, each LexBIGService provides a centralized metadata index that allows registration and query of code system metadata without requiring
resolution of individual CodingSchemes. This metadata index is optionally populated, typically during the vocabulary load process. The metadata index
allows for the metadata of multiple code systems to be cross-indexed and searched as part of the query subsystem.

Finally, the LexBIG architecture provides the underpinnings for LexBIG services to be made accessible through the caGRID environment in the future,

where vocabulary services might be deployed and discovered within a caGRID Globus container. However, this portion of the API is preliminary and awaits
coordination with caBIG® Architecture WS designees to determine exact recommendations and nature of LexBIG services on the grid.

Query Subsystem

APT
r Diata

abulary IModel and E

Overview

This subsystem provides the functionality required to fulfill caCORE/EVS and other vocabulary requests. The Query Service is comprised of Lexical
Operations, Graph Operations, Metadata, and History Operations.

® Lexical Set Operations - Lexical Set Operations provides methods to return a lists or iterators of coded entries. Supported query criteria include
the application of match/filter algorithms, sorting algorithms, and property restrictions. Support is also provided to resolve the union, intersection or
difference of two node sets.

® Graph Set Operations - Graph Operations support the subsetting of concepts according to relationship and distance, identification of relation
source and target concepts, and graph traversal. Additional operations include enumeration and traversal of concepts by relation, walking of
directed acyclic graphs (DAGs), enumeration of source and target concepts for a relation, and enumeration of relations for a concept.

®* Metadata Operations - Metadata Operations allows for the query and resolution of registered code system metadata according to specified

coding scheme references, property names, or values.
® History Operations - History provides vocabulary-specific information about concept insertions, modifications, splits, merges, and retirements
when supplied by the content provider.

Information Models

A brief introduction to the information models referenced by the LexBIG runtime are provided in the section, Systems and Architecture. This section will
extend on this introduction, providing a brief description of classes included by the base LexGrid information model and LexBIG-specific extensions to that
model.

(D Note

The information below is provided for introductory purposes. A full description of all available model components is also available in the javadoc
distributed with the LexBIG installation package (see file breakdown in Overview of the System). Since the javadoc is automatically generated
and synchronized during the build process, it is recommended as the primary reference for use by LexBIG developers.

LexGrid Model
The LexGrid model is mastered in XML Schema. The LexBIG project currently builds on the 2008 version of the LexGrid schema. A formal representation,

showing portions of this structure that are of primary interest to the LexBIG project, is presented below. A complete version of the model is available at Lex
Big Model and Schema.

CodingSchemes

The CodingSchemes branch of the model defines high level containers for concepts and relations. Each CodingScheme represents a unique code system
or version in the LexBIG service. Components of interest are described in the table below, with a corresponding class diagram following the table.

CodingScheme Component Description
codingSchemes Directory of coding schemes contained in the service.
codingScheme Describes and/or defines a code system, comprising a collection of concept codes and relationships.

concepts A set of coded entries in a coding scheme.

https://wiki.nci.nih.gov/display/LexEVS/LexBig+Model+and+Schema
https://wiki.nci.nih.gov/display/LexEVS/LexBig+Model+and+Schema

relations A collection of relations across a set of concept codes drawn from one or more coding schemes.

versions A list of past versions of the coding scheme.

@ Note

While listed for completeness, note that this portion of the model is not referenced at this time by the LexBIG API. In the first release, history
information is handled as a series of NCIChangeEvents (see LexBIG extensions below) by the LexBIG HistoryService.

cd codingSchemes /

codingSchemes

+ wxSDattributes do: dc [0..1] = codingSchemes

+oodingScheme |1..7

descifzhle

codingScheme

wXShattributes approxMumConcepts: tsinteger [0..1]
wXShattribute s codingScheme: localdame
wXShattributes defaultlanguage: defaultLanguage
wXShattribute s formalMame: tsCaselgnorelA55ting
wXShattribute o isH ative: tsBoolean [0..1]

lacalMame: localMame [1..-1]

whShattributew registerediame: registeredlame
wXShattributew representsVersion: wersion

source: source [0..-1]

supportedfssociation: supporntedfssaciation [0..-1]
supportedAssociationQualifier: suppotedAssociationQualifier [0..-1]
suppotedCaodingScheme: suppotedCodingScheme [0..-1]
suppotedCanceptStatus: supportedConceptStatus [0..-1]
supportedCaontext: supportedContesxt [0..-1]
supportedbataType: supportedbataType [0..-1]
supportedFormat: supportedFormat [1..-1]
supportedlanguage: supportedlanguage [1..-1]
suppotedProperty: suppotedProperty [1..-1]
supportedPropertylink: supportedPropertylink [O..-1]
supportedRepresentationalForm: suppontedRepresentationalFarm [0..-1]
suppotedSaurce: supportedSource [0..-1]

¢

e oY

+re|atiu:un5£3.."

desoribahle +1rersi-:-nﬂﬂ..1

relstions:relstion=s
warsions

+ wxXSDhattributes de: de
wXShattribute s isM ative: tsBoolean [0..1]
+ source: source [0..-1]

+ wxSDattributes der do [0..1] = version

+

+ooncepts |01

conceptsconcepts

+ wxSDattributes do: dc [0..1] = Concepts

Concepts

Each concept represents a unique entity within the code system, which can be further described by properties and related to other concepts through
relations.

class Diagrams

Ertity Version

wXSDoomplexTypex
coding Schemes::
CodingSchermeversion

+codingSchemeersion \O..'i

+cnncep1s:>l 0.7 -concepts

whShcomplexTypen
concepts: Concepts

wx Shattributes
do: String = "concepts"

+ooncepts

wrSDcomplexTyp

codingSchemes: CodingScheme

(=5

+eodingScheme | ©

-1
L

wiSDattributes
approxlumConcepts: Integer
codingScheme: String
copyright: String [0]
defaultLanguage: String
formaldame: String
isMative: Boolean
localMamelist: String [0..1]
registeredtame: String
represents\fersion: String

GO nGE ptList_&‘ 1.7

wXShoomplexTypes
concepts::PropertyLink

wXEDattibutes ~propertylinklist

Entity

wtShcomplexTypes
concepts:: Concept

link: String
sourcePropery: String
targetFroperty: String

0.."

wXSDattribute s

ishefined: Boolzan
islnferred: Boolean = falze

conceptStatus: String
izActive: Boolean
izAnonymous: Boolean

+presentationList
e~

b i

wtSDeomplexTypex
concepts::Presentation

whShattribute o
degreeOfFidelity: String
isFreferred: Boolean
matchlfMaContext: Boolean
representationalForm: String

-definitionList | /0.7

whShocomplexTypen
concepts::Definition

wXShattribute s

isPreferrad: Boolean

nceptPropertylist

wXSDoompl...
-instructionListy) f 0.7 concepts::
Concept Property
whShocompl...
concepts::
Instruction

wXShoomplexTypex

commonTypes::Property

propertyld: String
wXShattributes

whShcompl...
concepts
Cormrnert

format: String l:l
language: String

propertyMame: String

usageContext: String [0..7]

Components of interest are described in the table below:

Concept
Component

concept

comment
definition
instruction

presentation

property

propertyLink

Relations

Description

Represents a unique code for a concept within a coding scheme or a coding scheme version, along with an associated description and
properties.

A comment or annotation property for a concept.

A definitional property for a concept.

A formal instruction for the use of a concept.

A designation for a concept. The presentation identifier must, at bare minimum, uniquely map to a given text string within the context of
the containing concept. In some terminologies, every unique text string will have exactly one presentation identifier, which means that
the same presentation identifier may occur under more than one concept. In other terminologies, there may be more than one identifier
for a given text string, meaning that the presentation identifier uniquely determines the concept. Service software must not assume eith

er model. (See: property for additional elements).

A description, definition, annotation or other attribute that serves to further define or identify a coded term. Property names must be
included in the supportedProperty metadata for the coding scheme.

A link between two properties for a concept.. Examples include acronymFor, abbreviationOf, spellingVariantOf, etc. Link identifiers
must be included in the supportedPropertyLink metadata for the coding scheme.

Relations are used to define and qualify associations between concepts.

cdrelations J
amzonbabhie

coding Soheme c:xodingSoheme

ErEE e i on
coding2ehems cieoding Sohism svarean

+relallons 0.0 +relallons 0.0
= Fra]

desogbable
rsladon o

+ AZDalidbuk - do: do
+ cXZDalldbuk . [sHalue:
+ gource D source [0..-1]

kB oole an [0..1]

+amoclalon] 1..”

dezobabie
ascoolaton

iz Daliib vk e amocdalon: ool Hame
RS Dalih ks Torwan Hane : 1ae jnoe BESrng
AT I R e e Lol Hame [D..1]

wxZ Dalidb vk lsAnl Bedexlve: BEoolean [G..1]
R DhEliib uk e | ISymme Ilc: Eoolean [D..1]

sl Db ke e sAn D Tran v IFBool:an [T..1]

w3 balidb uk o Lsfunclonal: IsBoolean [D..1]
cXZDalinbuk - [shavigable : EBodlean [0..1] = e
wxZDalidb vk | sRedexive: EBoolean [0..1]

wZ Dalidbuk s | sRe vere Funclonal: BEoolean [0..1]

s Dalib u ks LEZymm e ble: FBeclean [@..1]

wZ Dalidb ke o 5Trand e IsBoolean [0..1]

=2 Dalidbuk = sTrand allonAsodallon: BBEoolean [G..1]
T Db ok e reverpe Ham & 150 a3 lgnore B 53ng 00,1
wZbaliibuk - lage KodingZcheme : localMame [3..1]

L T T T R T

#pounee Concep 1|0,

ascoolatonin chinos

+ wHZDalllbules soureCodlimg Scheme : localMame [0..1]
+ wHEZDalflbules soureConcep l concep kK ode

werzionable
assoolahble Bement,

+lamgelConcepl 0. /_/_,-/'"V Nnam-ﬂu” o.»
E -

acconlatonTarget aceoolaton Data
+ w¥ZDalibules BgelCodingScheme : local Hame [0..1] + wZDalribuk - dalaType: local Hame [0..1]
+ wHZDalibules Bgeloncepl: conoep Code + cEDalribuk s d: 1

+arpocla lord ua laallon |00

acceelaten@ualdeaton

52 oz Dalid buk - armoclalend ualldar: ool am
+ wxZDalldbuk - daklaType: locallam e [0..1]

Components of interest are described in the following table:

Relation Description
Component
association A relation between concept codes or concept codes and data. Association names must be included in the supportedAssociation

metadata for the coding scheme.

associationinstance = An instance of a 'source’ or left-hand side (LHS) of an association. An association instance references one or more 'targets' or
right-hand sides (RHS).

associationTarget = An instance of a target or RHS concept of an association.
associationData An instance of a target or RHS data value of an association.
associationQualific = A modifier that further qualifies an association triple.
ation

Naming

These elements are primarily used to define metadata for a coding scheme, mapping locally used names to global references.

class naming

localiizme e LR

URNMap «XSDsimple...
URM

wlSDattributes
+ urn: URHM [0..1]

supportedAssociation supportedPropertyLink

Eupported Propert
supportedfAs=socistion Gualifier
supportedLanguage
supported Coding Scheme
supported For mat

supported Concept Status supported Conte:t supportedDataType

supported Source

supported Represertational Form supportedHierarchy

Components of interest are described in the following table:

Naming Description
Component

supportedAssociation Each entry identifies the URN and local name for an association.

supportedAssociatio | Each entry identifies the URN and local name for an association qualifier.
nQualifier

supportedCodingSc | Each entry identifies the URN and local name of an external coding scheme. The URN portion maps to the registeredName of
heme the referenced scheme The local name is local to the referencing object.

supportedConceptS | Each entry identifies the URN and local name for a concept status value.
tatus

supportedContext Each entry identifies the URN and local name for a usage context.

supportedDataType | Each entry identifies the URN and local name for a data type (usually based in XML).

supportedFormat Each entry identifies the URN and local name for a presentation format (usually mime type).
supportedHierarchy | Each entry identifies the URN, id, association, root node, and whether or not the hierarchy is forward navigable.
supportedLanguage | Each entry identifies the URN and local name of a spoken or written language.

supportedProperty Each entry identifies the URN and local name of a property.

supportedPropertyLi | Each entry identifies the URN and local name for a lexical association between two concept properties (e.g. ‘abbreviationFor',
nk ‘acronympFor’).

supportedRepresen | Each entry identifies the URN and local name of a representational form (e.g. noun, eponym).
tationalForm

supportedSource Each entry identifies the URN and local name of an external source reference.

URN A universal resource name, representing the globally unique name of a resource such as a source, coding scheme, concept
code, etc.

URNMap The declaration of a local name and the URN that it represents. The behavior of an omitted URN is context specific.

LexBIG Model Extensions
The following extensions to the LexGrid model were introduced in support of caBIG® requirements. As with the LexGrid model, this document provides a

summary of the most significant elements for consideration by LexBIG programmers. The complete and current version of the model is available online at L
exBig Model and Schema.

Core

LexBIG core elements provide enhanced referencing and controlled resolution of LexGrid model objects.

https://wiki.nci.nih.gov/display/LexEVS/LexBig+Model+and+Schema
https://wiki.nci.nih.gov/display/LexEVS/LexBig+Model+and+Schema

« ELMEra ot
Loglewsl

= debug sTing
= mf: sring
= waAm STing
= mmor srng
= fatab sring

= XEDcomplex Type e
LogEntry

XEDa T iU

XEEDe e me i

assccEed Rl anyUR
emtry Time mesamp
8RR B

message: wCaseignoreisSSTing
aroE sl sTing
orogra sk amas sring

an pLiRgi

2250 sim ple Ty pee
oEH

Cooed

s¥Hing

s XEDEmpEType:
In g 22 e e LRM0 ridam e

XS Dcompiex Types x
Con e piifsfe ren o

XEDmmpiex Type:
Ham 24 pdv alue

ke XSDoompiex Type s
Rafere sl lnk

XEDatrmue X
= oonepCodes conce piCode &

S Datirows X SOatriowe
mm e ome e = Fret any R

ZXSDoompkexTioes
Fim 50 hvsd Co pos pi Fists ren oe

XSDoomokex Tyoee

Assonlatlon
XEDaTr bute
= oxdingSchemeURi: SURN EEDiehe ment
= oxdiogSchemeVErson: werson = asocaxdConcepis |DCol Associsted Conemiis
= =msociatdbats ToCoil-Aso dandoaalis
XEDiatriboe
codedEnTy = ssociationMame: ocalMame
Asmociaion Lis = drectionslMame: A seignone

Aseo et onlks

LA X1 &M 50N =

=50 simiple Ty pee
= rviesURL

sXSDoompex Tyoes
Asson ladestoneapt

XEDee mer
o dationuallfers 1 0To L ool MameL i

XED st e

S WS OaD e DoD A

o SDcom phex Ty pee
Meiad ataFrops gy

XEDaTr ade

= codingSchemeURN: URN

= codingSche meVerson: Werson
= mmme iooibisme

= walue: sTiNg

£XSDmmpexT yose

Abs oloied odirg 2ok em ey arslonFeds ren s

zXSDcompiex Type e
Codlng Sshemefommarny

xXSDcomplexType s
Coding o bemeVers lopDTag

XSDanTiowne
= ooding S
= coding Scheme Version: ver sioe

Feme RN RN

KED e merm

= formaiiame: sCaseignone S STIng

XEDarr e

= odngSdemelRi SURN
= locaMName localame

= repREserTASErson. Werson

= DdingsSdyemeDe scription . e Ny De i plon = NEFSONT WErson

XEDe emen

Components of interest are described in the following table:

Core Component
AbsoluteCodingSch
emeVersionReferen
ce
AssociatedConcept

Association

CodingSchemeSum
mary

CodingSchemeURN
orName

CodingSchemeVersi
onOrTag

ConceptReference

Description

An absolute reference to a coding scheme. This form of reference is service independent, as it doesn't depend on local coding

schemes names or virtual tags.

A concept reference that is the source or target of an association.

The representation of a particular association as it appears in a CodedNode.

Abbreviated list of information about a coding scheme.

Either a local name or the URN of a coding scheme. These two are differentiated syntactically - if the entity includes a colon

or a hash "#" it is assumed to be a URN. Otherwise it is assumed to be a local name.

A named coding scheme version or a virtual tag (e.g. latest, production, etc). Note that the tagged form of identifier is only

applicable in the context of a given service, as one service may identify the scheme as "production” and another as "staging".

A reference to a coding scheme and a concept code.

LogEntry A single recorded log entry.

LogLevel Indicates severity of the log entry.

MetadataProperty Reference to a property name and value stored in the coding scheme metadata.
NameAndValue A simple name/value pair.

ReferenceLink Any reference to another document element. Used by the REST architecture to embed links.

ResolvedConceptRe = A resolvable concept reference.
ference

ServiceURL References a service in the Globus environment, this will be a global service handle (GSH).

InterfaceElements

Defines metadata related to model objects required by the runtime.

cd IntefaceElements /

o¥ SDcomplexT ypes

siring i oduleDes cription
eXEDsimplaTypes XSelkement
Proce ss State

+ descrption: ring

X5Datrbue

+state
i Shattibutes

oX Shextensons

a X5 DcomplexT ywes S =
Process5ttus b ‘

ExtensionDe sc ription iR B

SortContext

+ qgraph: rin

+

aX SDextensons

eX 5 DcomplexT ypes aX 5DcomplexT ype s X S0complexT ypes o S0omplexT ypes
Load Status Ex portS & tus SortDescription Sortl ption

K 50elemeant

X5Celement X50atnbuts
+ destinato

+ ascending:

+ =xiEnsionMar

n; anyURl

e X5 DcomplexT ypes

X SDomplexT ypes
RenderingDetail

SysemHRelease Detail

X5Dattribue X5Celement

+ enfitWersions entity

+ deactivsteDate: tl imestamp

=ion

a5 DoomplexT ypee
Coding 5c he me Re ndering

Components of interest are described in the following table:

Component Description
CodingSchemeRendering = Information about a coding scheme as it appears in a particular service.
ExportStatus Reports the state of LexBIG export operations.
ExtensionDescription

Describes an add-on module registered to the LexBIG environment.

LoadStatus Reports the state of LexBIG load operations.

ModuleDescription Describes a LexBIG integrated software module.

ProcessState Enumerates possible status reported for LexBIG runtime operations.

ProcessStatus Reports the state of LexBIG runtime operations.

RenderingDetail The details of how a coding scheme is rendered in a given service.

SortContext Describes a LexBIG sort module.

SortDescription A description of a LexBIG extension module.

SortOption Represents a pairing of sort algorithm and order.

SystemReleaseDetail The combination of a system release and all of the entityVersions that accompanied that release.
NCIHistory

Maintains a record of modifications made to a code system.

cd NCIHistory -

wenumeraticns
changeType

+ oeaie: string
+ retire string
+ menge: string
+ split: string
+ madify: string

+editaction 1.1
« X 50atmibutes

wHXS0complexTypes
HCIChangeEwvent

¥5Dattribute

+ conceptoode: conceptCode

+ oonceptMams conceptCode
+ editDate: tsTimestamp

+ referencecods conceptCode
+ referencename: conceptCods

Components of interest are described in the following table:

Component Description
changeType Atomic modification actions. Currently populated from a combination of Concordia, SNOMED-CT list and NCI's action list.

NCIChangeEv | A change event as documented in ftp:/ftp1.nci.nih.gov/pub/cacore/EVS/ReadMe_history.txt. Note that date and time of the change
ent event is recorded in the containing version. All change events for the same/date and time a recorded in the same version.

LexBIG APIs

The section, Information Models describes the general format and organization of information handled by the LexBIG runtime. This section describes the
primary application programming interfaces used to take action (e.g. retrieve or administer) against that content.

@ Note

The information below is provided for introductory purposes. A full description of all available classes and methods is also available in the
javadoc distributed with the LexBIG installation package (see file breakdown in Overview of the Software). Since the javadoc is automatically
generated and synchronized during the build process, it is recommended as the primary reference for use by LexBIG developers.

Overview

ftp://ftp1.nci.nih.gov/pub/cacore/EVS/ReadMe_history.txt

Programming interfaces for the system fall into three primary categories:

® Core Services - Includes the LexBIGService, LexBIGServiceManager, CodedNodeSet and CodedNodeGraph classes, which provide the initial
entry points for programmatic access to all system features and data.

® Service Extensions - The extension mechanism provides for pluggable system features. Current extension points allow for the introduction of
custom load and indexing mechanisms, unique query sort and filter mechanisms, and generic functional extensions which can be advertised for
availability to client programs.

® Utilities - Utility classes, such as those implementing iterator support, are provided by the system to provide convenience and optimize the
handling of resources accessed through the runtime.

Core Services

Provides central entry points for programmatic access to system features and data.

class LexBiGService

Segmlizahie

winterface»
LexBlGService: 'LexBIGSeivice

getCodingSchemeConcepts(String, CodingScheme\l/ersionOrTag) : CodedNodeSet
getCodingSchemeConcepts{Stiing. CodingSchemeVersionOrTag. boolean) : CodedNodeSat
getFilter String) : Filter

getFilterExtensions|) . ExtensionDescriptionList

getGenericExtension(String) : GenericExtension

getGenericExtensions() : ExtensionDescriptionList

getHistoryService(String) . HistoryService

getLastUpdateTime{) : Date

gethMatchAlgorthms() : ModuleDescriptionList

getNodeGraph{ String. CodingSchemeVersionOrTag, String) © CodedNodeGraph
gethodeSet{String, CodingSchemeVersionOrTag, LocalNamelist) : CodedNodeSet
getServiceManager Object) : LexBIGServiceManager

getServiceMetadata() LexBlIGSeniceMetadata

getSortAlgorithm{String) : Sort

getSortAlgorithms(SortContext) : SortDescriptionList
getSupportedCodingSchemes() : CodingSchemeRenderingList
resolveCodingScheme(String, CodingSchemeVersionOrTag) : CodingScheme
resolveCodingSchemeCopyright{String, CodingScheme\lersionOrTag) : String

R EE R I

Components of interest are described in the following table:

Component Description

CodedNodeGr = A virtual graph where the edges represent associations and the nodes represent concept codes. A CodedNodeGraph describes a
aph graph that can be combined with other graphs, queried or resolved into an actual graph rendering.

CodedNodeS @ A coded node set represents a flat list of coded entries.
et

LexBIGService = This interface represents the core interface to a LexBIG service.
LexBIGServic | The service manager provides a single write and update access point for all of a service's content. The service manager allows new
eManager coding schemes to be validated and loaded, existing coding schemes to be retired and removed and the status of various coding

schemes to be updated and changed.

LexBIGServic | Interface to perform system-wide query over optionally loaded metadata for loaded code systems and providers.
eMetadata

Service Extensions

Provides registration and lookup for pluggable system features.

cd Extensions

winterfaces winterfaces
ExtensionRegisiry Extendable
~ getExportExiension{Sinng) ; ExtensionDezcriplion ~ geiDezcription(] : Sinng
~ gelExportExtenszions(] ;: ExtensionDescriptionlizt ~ geiName() ; Siring
~ geiFilierExtenzionSinng] ; ExtenzicnDezcription ~ geiProviden) : Siring
~ getFilterExtensions(] : ExtenzionDescriptionl izt ~ getWersion(] ; Siring

~ getGensrcExtension|Sinng) : ExtenzionDezcrption
~ getGenencExfenzions() - ExiensionDezcnpiionl izt

~ getindexExtenszion{Sirnng) ; ExtenzionDescripiion

~ getindexExtensionsz(] ; ExtensionDescripiionlist

~ geflogdExtension(Sinng) ; ExtenzionDescriplion

~ getloadExtensions(] ;| ExtenzicnDescnplionl izt

~ getSortxtenzion{Sirnng) : SornDezcrplion

~ getSorExtenzions(} - SornDezcriptionlizt

~ registerExponExtenzion|ExtensionDezcription) © void
~ registerFilterExtensionExtensionDezcription) © void
terGenencExtensionExtensicnDescnplion) © void
~ regizterdndexExtenzion/ExtensionDezcription) ; void
~ register osdExtenszion/ExtensionDescription) © void
~ registerSorExtenzion{SonDeszcnpiion) : void

~ wunregizterCxporiCxiension|Sirng) © void

~ unregisterFilterExtenesion]Sinng) - void

~ unregizterGenencExtension{Sinng) ; void

~ unregiziedndexExtenzion]Sinng) © void

~ unregizier cadExtension(Sinng) © void

~ unregizterSortatenzion{Sinng) ;| void

~ regi

Components of interest are described in the following table:

Component Description

ExtensionRegi | Allows registration and lookup of implementers for extensible pieces of the LexBIG architecture.
stry

Extendable Marks a class as an extension to the LexBIG application programming interface. This allows for centralized registration, lookup, and
access to defined functions.

Query Extensions

Query extensions provide the ability to further constrain or manage query results.

cd Guery /

Extendsbies Extendsbls
Comparator winterfaoss

winterfaces Filter
Sort ~ maich{RezolvedConcepiRelference)] - boolean

Components of interest are described in the following table:

Component Description

Filter Allows for additional filtering of query results.
Sort Allows for unique sorting of query results. This interface provides a comparator to evaluate order of any two given items from the result
set.

Load Extensions

Load extensions are responsible for the validation and import of content to the LexBIG repository. Vocabularies may be imported from a variety of formats
including LexGrid canonical XML, NCI Thesaurus (OWL), and NCI MetaThesaurus (UMLS RRF).

td Load

wnEriaee

LewGrid_Loader

smefaes

— Text_Loader
| : LER =

wefiaces

snEriacee

NCI_MetaThesaurusl aader

OWL_Loader

cimerzes
NCHistoryLoader

wmeraes

UMLS_Loader

anEriace

0B0HistoryLoader

nErianE
Metalata Loader

Components of interest are described in the following table:

Component
Loader
LexGrid_Loader

NCI_MetaThesa
urusLoader

OBO_Loader

OWL_Loader

Text_Loader

UMLS_Loader

MetaData_Load
er

NCIHistoryLoad
er

OBOHistoryLoa
der

Description
The loader interface validates and/or loads content for a service.
Validates and/or loads content provided in the LexGrid canonical XML format.

Validates and/or loads the complete NCI MetaThesaurus. Content is supplied in RRF format. Note: To load individual coding
schemes, consider using the UMLS_Loader as an alternative.

Validates and/or loads content provided in Open Biomedical Ontologies (OBO) text format.

Validates and/or loads content provided in Web Ontology Language (OWL) XML format. Note that for LexBIG phase 1 this loader is
designed to specifically handle the NCI Thesaurus as provided in OWL format.

A loader for delimited text type files. Text files come in one of two formats: indented code/designation pair or indented code
/designation/description triples.

Load one or more coding schemes from UMLS RRF format stored in a SQL database.

Validates and/or loads content provided in metadata xml format. The only requirement of the xml file is that it be a valid xml file.

A loader that takes the delimited NCI history file and applies it to a coding scheme.

Load an OBO change history file.

Export Extensions

Export extensions are responsible for the export of content from the LexBIG repository to other representative vocabulary formats.

cd Export -

Extendsble
ainterfaces
Exporter
(1 void
Hoglloglevel) : LogEming]
+ geiReferences(] - URI]
+ getSiatus(] : ExportSiatrs

N4

winterfaces
Lex Grd_Exporter

+ exporfAbzoluteCodingScheme VersionReference, URN, boolean, boolean, boolean) & void
+ geiSchemaURL[) - URI
+ getSchemaVersion(] : String

winterfaces
OBO_Exporter
+ exporfAbeclufeC odingSchem eVerzionReference, URI, boolean, boolean, boolean) @ void
+ getOBOVer=ion|) : Sinng

winterfaces
OWL_Exporter

+ exporfAbzoluteCodingScheme VersionReference, URN, boolean, boolean, boolean) & void

Components of interest are described in the following table:

Component Description
Exporter Defines a class of object used to export content from the underlying LexGrid repository to another repository or file format.
LexGrid_Exporter | Exports content to LexGrid canonical XML format.
OBO_Exporter Exports content to OBO text format.

OWL_Exporter Exports content to OWL XML format.

Index Extensions

Index extensions are built to optimize the finding, sorting and matching of query results.

cd Index -

Losder
winterfaces
IndexLoader

+ clesmAbzoluteCodingSchemeVersionReference, index, boolean) - void
+ [lpadiAbzoluteCodingSchemeVerzionReference, index, boolesn, boolean) : void
+ rebuildjAbzciuteCodingSchemeVersionReference, index, boolesn) | void

Extendsble
winterfaces
Index

+ geilosden) ; indexl osder
+ [locafteMsichingDesignations(CodedNode Sed, Siring, boolean, Sinng) : CodedNodeSet
+ [locateMafchingProperies{CodedNodeSet, LocalNamel izt, Sinng, Sinng) : CodedNodeSet

Components of interest are described in the following table:

Component Description

Index Identifies expected behavior and an associated loader to build and maintain a named index. Note that a single loader may be used to
maintain multiple named indexes.

IndexLoader Manages registered index extensions. A single loader may be used to create and maintain multiple indexes over one or more coding
schemes. It is the responsibility of the loader to properly interpret each index it services by name, version, and provider.

Generic Extensions

Generic extensions provides a mechanism to register application-specific extensions for reference and reuse.

cd Generic

Extendsbie
winterfaces
GenerncExtension

winterfaces
LexBiIGServiceConveniencelethods

~ codeToNsme|Sinng, Sirng, CodingSchemeVerzionOrTag) © String

~ createCodeNodeSel{Sinng(], Sinng, CodingSchemeVersionOrTag) CodedNodeSet

~ getChildrenOffSinng, Sirnng, Sinng, Sinng, CodingSchemeVerzionOrTag, boolean) © Association

~ getEndNodez(Sinng, CodingSchemeVersionCrTag, Siring, Sinng) : ResolvedConcepiReferancel izt
~ geiParentz0f 5inng, Sinng, Siring, Sinng, CodingSchemeVersionOrTag, boolean) : Azsociafion

~ geiRenderngDetgil{Sinng, CodingSchemeVersionCOriag) | CodingSchemeRendening

~ gefTopNodes(Siring, CodingSchemeVersionOrTag, Sting, Sinng) : ResolvedConcepiReferancel izt
~ izCodeRetired| g, Siring, CodingScheme VersionOrTag) - boolean

~ nameToCode(Sinng, Sinng, CodingSchemeVerzionOrTag) @ Siring

Components of interest are described in the following table:

Component Description

GenericExtension The generic extension class. Classes that implement this class are accessible via the LexBIGService interface.

LexBIGServiceConvenienceMethods | Convenience methods to be implemented as a generic extension of the LexBIG API.

Utilities
Defines helper classes externalized by the LexBIG API.

Iterators

Iterators are used to provide controlled resolution of query results.

cd lterators

winterfaoes
EntityListiterator
+ hasiexd) . boolean
+ numberRemsining(j : int
+ relesze(] | void

winterfames
ResolvedConceptReferencesiterator

+ nexi]] ;| ResplvedConcepiReference
i : RezolvedConceptReferencel izt

Components of interest include:

Component Description

EntityListlterator Generic interface for flexible resolution of LexBIG objects.

ResolvedConceptReferenceslterato = An iterator for retrieving resolved coding scheme references.

Additional Utility Classes

It is highly recommended that all LexBIG programmers familiarize themselves with the classes contained in the org.LexGrid.LexBIG.Utility package. Many
useful features are provided in an effort to increase approachability of the API and assist the programmer in common tasks. This package currently
contains the following classes:

® Constructors - Helper class to ease creating common objects.

® ConvenienceMethods - One-stop shopping for convenience methods that have been implemented against the LexBIG API.
® | BConstants - Provides constants for use in the LexBIG API.

® ObjectToString - Provides centralized formatting of LexBIG Objects to String representations.

Examples and Recommendations for Use

Concept Resolution

Programmers access coded concepts by acquiring first a node set or graph. After specifying optional restrictions, the nodes in this set or graph can be
resolved as a list of Concept Ref er ence objects which in turn contain references to one or more Concept objects. The following example provides a
simple query of concept codes:

Service Metadata Retrieval

The LexBIG system maintains service metadata which can provide client programs with information about code system content and assigned copyright
llicensing information. Below is an brief example showing how to access and print some of this metadata:

Combinatorial Queries

One of the most powerful features of the LexBIG architecture is the ability to define multiple search and sort criteria without intermediate retrieval of data
from the LexBIG service. Consider the following code snippet:

This example shows a simple yet powerful query to search a code system based on a 'sounds like' match algorithm (the list of all available match
algorithms can be listed using the ‘ListExtensions -m' admin script).

Declaring the target concept space

The coded node set (variable 'cns') is initially declared to query the NCI Thesaurus vocabulary. At this point the concept space included by the set can be
thought of as unrestricted, addressing every defined coded entry (the ‘false’ value on the declaration indicates to also include inactive concepts). However,
it important to note that no search is performed by the LexBIG service at this time.

Applying filter criteria

Similarly, no computation is performed (to realize query results) during invocation of the <tt>restrictToMatchingDesignations()</tt> and
<tt>restrictToMatchingProperties()</tt> methods. However, these calls effectively narrow the target space even further, indicating that filters should be
applied to the information returned by the LexBIG query service.

Using the Lucene Query Syntax and other text matching functions

The text criteria applied in methods such as rest ri ct ToMat chi ngDesi gnati ons() uses one of a number of powerful text processing applications to
provide the user with broad capability for text based searches. Text matches can be simple applications of exactMatch, startsWith or contains algorithms
as well as powerful regular expressions and Lucene Query syntax (used in the LuceneQuery function.) As shown above these options are passed into the r
estrict ToMat chi ngDesi gnati ons() Method as parameters.

Lucene Queries are well documented and can be very powerful. The uninitiated user may need some background on their use however. The user should
start here with the official Lucene Query Parser documentation.

Keep in mind that some LexBIG queries such as "startsWith" and "contains" use wild card searches under the covers, so that use of wild cards in this
context can cause errors in searches involving these search types.

Instead it is best to use the flexibility of the Lucene Query searches in the matchingDesignation by using the Lucene Query searches in LexBIG where
most searches will work much as described in the query syntax documentation.

Special characters in the Lucene Query search can cause unexpected results. If you are not using special characters as recommended for various Lucene
search mechanisms then your searches may not return expected results or may return an error. If the value you are searching upon contains say,
parenthesis, you will need to place the value in quotations. The escape characters described in the Lucene Documentation do not work at this time.

Likewise you should not expect to see a Lucene Query narrow down search results as you progressively enter a longer substring more closely matching
your term of interest. Instead use the contains method.

Applying sorting criteria
Multiple sort algorithms can be applied to control the order of items returned. In this case, we indicate that results are to be sorted based on primary and

secondary criteria. The "matchToQuery" algorithm indicates to sort the result according to best match as determined by the search engine. The "code"
item indicates to perform a secondary sort based on concept code.

@ Note

The list of all available sort algorithms can be listed using the 'ListExtensions -s' admin script.

Restricting the information returned for matching items

The LexBIG API also allows the programmer to restrict the values returned for each matching concept. In this example, we chose to return only the UMLS
CUI and assigned text presentations.

Retrieving the result
A query is finally performed during the ‘resolve’ step, with results returned to the declared list. It is at this point that the LexBIG service does the heavy
lifting. By declaring the full extent of the request up front (namespace, match criteria, sort criteria, and returned values), the service then has the

opportunity to optimize the query path. In addition, in this example we restrict the number of items returned to a maximum of 6. This combined approach
has the benefit of reducing server-side processing while minimizing the volume and frequency of traffic between the client program and the LexBIG service.

@ Note

While this section provides one example of combining criteria, this same pattern can be applied to many of the <tt>CodedNodeSet</tt> and
<tt>CodedNodeGraph</tt> operations. It is strongly recommended that programmers familiarize themselves with this programming model and
its application.

Additional Resources

The examples and automated test programs provided by the LexBIG installation (see file breakdown in the section, Overview of the Software) are available
as additional reference materials.

Exercising the API - The LexBIG GUI
The LexBIG Graphical User Interface, or GUI, is an optional component of the LexBIG install which will be in the /gui folder of the base LexBIG installation
(see file breakdown in the section, Overview of the Software). The GUI is meant to provide a simple tool to test LexBIG API methods and quickly view the

results; almost all public methods defined by the LexBIG API are supported. This guide provides a brief overview of how the GUI can aid programmers in
writing code to the LexBIG API.

G) Note

The LexBIG GUI supports both administrative and test functions. Please refer to the LexBIG Administrator's Guide for instructions on using the
GUI as an administration tool.

Launching the GUI

Depending on the operating systems that you selected at installation time, you should have one or more of the following programs in the / gui folder:

Li nux_64-1bGUl . sh Li nux-1bG@U . sh
OSX- | bGUI . command W ndows- | bGUI . bat

Launch the GUI by executing the appropriate script for your platform. You will be presented with an application that looks like this:

_(B] x|

Commands Load Terminalogy Expork Terminelogy. Help

Available Code Systems

_Egde Systern Marne | Cade Swvstem Yersion | LRI . | Tag | Status | Last Uedate Tirne Get Code Set |
iThesaurus. owl 05,09, bt httpe ffncich. nci. nib. gose femlfowlfE. . inactive 5:31:35 AMon 10012/2
NI Thesaurus 10.07e kg fncich. nei.nib, goe el ol E. active 10:41;17 AM on 09/20; Get Code Graph |
MNCI Thesaurus 10.10a httpe ffncich. noi.nib. gose fxmlfowl/E. .. PRODUCTION | active 8:11:07 AM on 10/14/2
Zebrafish 1.2_June_14 2010 htkpeffncich.nei.nib. gov/fsminsfzeb. . active 1:17:29 PM on 09/26)2 Get History |
Manoparticle Ontology 1.0_Jan_29 2010 http: ffpurl. bioontlogy. orgfontolog. .. active Dd6:21 AMon 10§21/2
fungal_anataony IMASSIGHNED urn:lsid:bioontalogy. org:fungal_a... active 10:17:08 AM on 10/04) Refresh |
Gene Cntology October2010 urn:lsid:bioontology, org: GO PRODUCTION | active 6:50:03 AMon 1Of21f: —————
aukos 1.0 urmeaidi11.11.001 PRODUCTION | inactive 10:10:41 &AM on 10/04) Verel tlapifast |
Automobiles Extension 1.0-extension urmioid:11.11.0.1,1-extension inactive 7:53:49 AM on 10/15/Z _
MNCI Metathesaurus 200601 urn:oid: 2, 16.840,1.113883.3.26.1.2 ackive 10:51:33 AM on 09/21) Changs Tag |
Logical Observation Iden... 229 urnioid:2, 16.840,1,113833.6.1 PRODUCTION active £:58:30 AM on D9f20/Z ; w
Logical Observation Iden... 226 urm:oid: 2, 16.840.1.113883.6.1 inactive T126:07 PMon 092712 o |
Current Procedural Termi... | 2010 urnioid:2, 16.840,1,113383.6.12 active 1:08:15 PMon 10/06/2
Medical Dictionary for Re... 12.0 urn:oid:Z, 16.840,1,1135883.6.163 active 025:32 AM on 09242 Dieackivate |
ICD 9 M 1.0 urnioidi2, 16.540,1,113883.6.2 active 1:06:36 PM on 10/06/2
SNOMED Clinical Terms, ... 2010_01_31 urm:oid:2, 16.840,1,113883.6.96 active 6:05:03 PM on 09/18/2 Femove |
SNOMEDCT_2010_01_3... 20100131 urnioid:C2733618, SNOMEDCT.IC. ., active 6:11:09 AM on 10f25)2
MDR:MDR12_1_To ICD.., 200909 urn:oid: CL41 3320, MDA, ICDACM active 1:32:43 PM on 10/142 Remove History |
MDR:MDR12 1 T (CST... 200909 urmaid:CL413321.MDRLCST ackive 1:32:01 PMon 107142
MNCIE bo ICD9CM Mapping 1.0 urnioid:MCIE_to_TCDRCM_Mapping active 1:03:55 PM on 10/06/2 T |

Rebuid Indes: |

Selected CodedModeSets and CodedModeGraphs Restrictions

[driian |
Add

Interseckon |
Edit

Difference |

Remioye

Restrict ko Codes |
Rst to Source Codes |
Fistta Target Codes |

FLEmoye |
LaExpart |

H&

You must choose a single Code Set or Graph on the left.

Overview

The upper section of the GUI shows all of the code systems currently loaded, along with corresponding metadata. The lower section of the GUI is used to
combine, restrict and resolve Code Sets and Code Graphs.

The lower left section is where you can perform Boolean logic on Code Sets and Code Graphs. The lower right section is where you can introduce
restrictions on Code Sets and Code Graphs and browse results.

@ Note

The menu options are used primarily for administrative functions, and are covered in detail by the LexBIG Administrator's Guide. In addition, all
of the disabled buttons in the top half of the application are used for administrative functions, and are also described in the LexBIG
Administrator's Guide.

Creating New Queries

There are four buttons on the top half that are of interest for creating queries.

Refresh - This button causes the LexBIG GUI to reread the available terminologies and their respective metadata. This can be useful when using
the GUI to view a LexBIG environment that is being modified by another process.

Get History - If a terminology with available history data is selected, this button opens a history browser to view it via the NCI history API. This
option is currently only applicable when working with the NCI Thesaurus terminology.

Get Code Set - This button causes the selected terminology to be added to the lower left section of the GUI as a code set - which is noted by a
'CS' prefix.

Get Code Graph - This button causes the selected terminology to be added to the lower left section of the GUI as a code graph - which is noted
by a 'CG' prefix.

Customizing Queries

After selecting a code system and clicking on Get Code Set or Get Code Graph, a row will be added to the lower left section of the GUI for each click.
There are seven buttons in the lower left section that allow combinatorial logic between the code sets in the lower left.

Union - This button is enabled if two Code Sets or two Code Graphs are selected in the lower left. Clicking the button creates a new virtual Code
Set or Code Graph which represents the Boolean union of the two selected items. All restrictions applied to the individual items still apply.
Intersection - This button is enabled if two Code Sets or two Code Graphs are selected in the lower left. Clicking the button creates a new virtual
Code Set or Code Graph which represents the Boolean intersection of the two selected items. All restrictions applied to the individual items still
apply.

Difference - This button is enabled if two Code Sets or two Code Graphs are selected in the lower left. Clicking the button creates a new virtual
Code Set which represents the Boolean difference of the two selected Code Sets. All restrictions applied to the individual items still apply.
Restrict to Codes - This button is enabled if a Code Set and a Code Graph are selected in the lower left. Clicking the button creates a new
virtual Code Graph which will be restricted to concept codes occurring in the selected Code Set.

Restrict to Source Codes - This button is enabled if a Code Set and a Code Graph are selected in the lower left. Clicking the button creates a
new virtual Code Graph which will have its source codes restricted to codes occurring in the selected Code Set.

Restrict to Target Codes - This button is enabled if a Code Set and a Code Graph are selected in the lower left. Clicking the button creates a
new virtual Code Graph which will have its target codes restricted to codes occurring in the selected Code Set.

Remove - This button is enabled if any Code Set or Code Graph (or virtual Code Set or Code Graph) is selected in the lower left. Clicking the
button will remove the selected item from the list.

The lower right section of the GUI is used to apply restrictions to Code Sets or Code Graphs, and set the variables that need to be passed into the resolve

method.

Working with Code Sets

If a Code Set is selected in the lower left, then the lower right section will look like this:

ML DEEH. 1L NEOPIAST 008 L., | L5 UFMG 003, 10, G L INSCCNE LIS BT On s e
MCI_Thesaurus 03.12a urnioid:2,16,840.1,,, PRODUCTION active 10:36:35 AM on 10 Dottt
SMODEMT 2000 SMODEMT ackive 10:15:21 &M on 0 sl

Remaove |
Remove Histors: |
| _’J Rebuild Indesx |

Selected CodedModeSets and CodedModeGraphs Restrictions

Automaobiles 1.0 Coded Mode Set 0 - Automobiles 1.0
Urier |
Intersection |

Edit
Difference |
Remove |

Restrich bo Corles

[only Include Active Codes

Rsb Lo Source Codes

REsbbo Target Eodes

Remove |

Set Sort Options | Resclve Code Set

In the lower right section, there are two halves - the top half and the bottom half. The top half is used to apply restrictions. The bottom half provides query
options and resolution.

® Add - This button introduces a new restriction to the Coded Node Set. Clicking it will bring up the following dialog box for creating restrictions:

Il Configure Restriction

Restriction Twpe |[§

Match Texk I

Match Algarithm ILuceneQuery j

Match Language I j
Preferred Only [

ik Zancel

The top drop down list indicates the type of restriction to add. The rest of the dialog box will change depending on the type of restriction selected.
All required parameters for the selected restriction type will be presented.

Edit - This button is enabled when a restriction is selected. Clicking it allows revision of an existing restriction.

Remove -This button is enabled when a restriction is selected. Clicking it removes the selected restriction.

Only Include Active Codes - This check box indicates whether or not to include inactive codes when resolving the selected code set.

Set Sort Options - This button will bring up a dialog box to choose the desired sort order of the results.

Resolve Code Set - This button will bring up a result window where the Code Set will be resolved and displayed.

Working with Code Graphs

If you select a Coded Node Graph in the lower left section of the LexBIG GUI, the lower right section will look like this:

Remoyve History, |

1 | ﬂ Rehild Trdes

Selected CodedModeSets and CodedModeGraphs Restrictions

Coded Mode Graph 1 - Automobiles 1.0
Hrian I

Inkersection

Cifference I
Restrct ko Codes I

Rsbbo Soufce Codes

#Add

it

Remoye

Relation Contsiner | .

Rstto Target Codes Faocus Code

‘LL

Focus Code System I j
BT | Max Resclve Depth [-1 IV Resolve Forward [Resolve Backward

Set Sort Ophions | Resolve as 3et | Resolve as Graph I

Again, there are two halves to the lower right section. The top half allows restrictions to be applied to the selected Code Graph, and it works the same as it
does for a Coded Node Set. Please see the section above on applying restrictions to a Coded Node Set.

The lower half provides additional variables applicable when resolving a Coded Node Graph. For further explanation of these options, refer to the LexBIG
API documentation.

® Relation Container (Optional) - Indicates the CodingScheme Relations container to query. The drop down list is populated with allowable
selections.

® Focus Code (Optional) - Provides the code used as a starting point when resolving graph relations. This value is required for some queries,
depending on the nature of requested associations.

® Focus Code System (Optional) - Indicates the code system containing the Focus Code. The drop down list is populated with allowable selections.

Max Resolve Depth - How many levels deep should the graph be resolved? -1 is the default, which does not limit the depth.
Resolve Forward - Populate codes downstream from the focus node (based on directionality defined by each association).
Resolve Backward - Populate codes upstream from the focus node (based on directionality defined by each association).
Set Sort Options - This button will bring up a dialog box to choose the desired sort order of the results.

Resolve As Set - Resolves and displays the graph results as a coded node set.

Resolve As Graph -Resolves and displays the graph results.

Viewing Query Results

Clicking on the Resolve buttons for either a Coded Node Set or a Coded Node Graph will bring up the Result Browser window:

BB Result Browser =)

oding Scheme: Automobiles - ornioidi11.11.0.1 :]

Ford - Ford Mokor Company
005 - Domeskic Auto Makers
73 - Oldsmobile

a0t - Car

0001 - Autormobile

Gl - @eneral Motors
Jaguar - Jaguar

Chewy - Chewrolet

oncept Code: TOO01
ntity Description: Truck
tatus: 65
s Active: true
First ¥Yersion: true
Last Yersion: trueg
Presentation t1: Truck
Is Preferred: true

Language: en
Match If Mo Context: true

TOOO1
Trucl L

L0001
Automobile

The left side shows a list of all the concept codes returned. When a concept code is selected on the left, the upper right will show a full description of the
selected code. The lower right will show a graph view of the neighboring concepts.

When a Coded Node Graph is resolved, the result viewing window will look like this (this is the same Code System as above):

BB Result Browser [_ O]

A0001 - Automobile]
TOOO1 - Truck,

a0t - Car

Brakes -

Tires -

Batteries -

005 - Domeskic Auto Makers
Ford - Ford Mokor Company j
Jaguar - Jaguar

GM - General Motars

73 - Dldsmobile

Chewy - Chewrolet

TOOO1
Trucl:
COoo1
i L Car
AD001 PR Brales
Automobile ey
= Tires
S ity s
top-thing Batteries
T Ford
003 sanme FOrd Motor Company
Domestic Auto Makers ... GM

General Motors

The left side still has a list of all of the concepts in the graph. The upper right will give a description of the selected concept. The lower right shows the
entire graph.

The lower right section is adjustable, and dynamic. It responds to mouse clicks, dragging, and numerous key combinations. Beyond a depth of 3, the graph
may "collapse" and not show all of the nodes until you click on a node. Clicking on a node will cause it to expand out and display its children. Here are a
list of key combinations recognized by the graph viewer:

Left Click + Mouse Movement - Drags the view.

Right Click + Mouse Movement Up Or Down - Zooms in or out.
Right Click (on white space) - Zooms the view to fit.

Ctrl + '+' - Expands the graph connection lines

Ctrl + '-' - Contracts the graph connection lines

Ctrl + 1" (or '2' or '3' or '4") - Changes the orientation of the graph.

Appendix A References

This appendix includes lists and hypertext links, where appropriate, to technical manuals, articles, scientific publications and online resources related to the
LexBIG project.

LexBIG GForge project Docs archive, Files archive
LexBIG Project Administration Materials

LexGrid Home Page for this release

Vocabulary Knowledge Center

Sun Java Tools (JDK, JRE, NetBeans) g

Eclipse Project (IDE) B

Appendix B Included Materials

Components

The following Java archives are distributed with the LexBIG runtime environment and may be of interest to programmers:

Module Function

https://wiki.nci.nih.gov/pages/viewpage.action?pageId=189825334
https://wiki.nci.nih.gov/pages/viewpage.action?pageId=189825336
https://wiki.nci.nih.gov/pages/viewpage.action?pageId=189825334
https://wiki.nci.nih.gov/display/LexEVS/LexEVS+4.2.1
https://wiki.nci.nih.gov/pages/viewpage.action?pageId=63996710
http://java.sun.com/
http://www.cancer.gov/policies/linking
http://www.eclipse.org/eclipse/
http://www.cancer.gov/policies/linking

| bRunt i

The LexBIG runtime code, including all necessary code and dependencies required for direct Java-to-Java invocation of the LexBIG API.

me This consolidates LexBIG code and 3rd party modules in order to simplify configuration for program execution.

G) Note

This archive is not available for redistribution simply because individual contributions are not easily separated and the combined content cannot
be shared under a single license. It is provided strictly as a convenience for simplified program execution and in accordance with the user
having agreed to all terms and conditions during product installation.

Redistributable components (e.g. those listed below) and associated license terms are also made available. The redistributable components provide
equivalent content and function, but require more extensive configuration for program execution.

| exbi g
I bGUI

activati on B¢
caGid

comons-cl i B
commons- codec B¢

commons-col | ecti ons

commons- | ang i
commons- | oggi ng i

commons- pool i

gnu- r egexp B¢
hsql db &

i cudj ey
jakarta—regexp@
j cal endar g
jdom@

jena@

junit &

| 0g4j &

| ucene- cor e B¢

mai | B

mm nysql (drivers,

2.0.6) £

org. eclipse. i *
post gresql
(drivers) B¢

pr ef use B

swt B (swt .jar)

Xerces @

This archive includes the LexBIG runtime code, excluding all dependencies.
The LexBIG graphical user interface runtime code, excluding all dependencies.

Provided by Sun's reference implementation of the JavaBeans Activation Framework (JAF) B¢ standard extension. Used for
e-mail notification when runtime errors occur.

Grid infrastructure to support the caBIG® community. Contains tools for creating and deploying caBIG®-compliant grid
services.

Provides a simple API for working with command line arguments, options, option groups, mandatory options and so forth.
Provides implementations of common encoders and decoders such as Base64, Hex, Phonetic and URLSs.

Provides a suite of classes that extend or augment the Java Collections Framework.

Provides a very common set of utility classes that provide extra functionality for classes in the j ava. | ang package.
Provides a bridge between different logging libraries.

Provides a generic object pooling interface, a toolkit for creating modular object pools and several general purpose pool
implementations.

Provides a Java language implementation of standard NFA regular expression features.

SQL relational database engine written in Java.

International components for Unicode processing.

Java package for processing regular expressions.

Java date chooser bean for graphically picking a date.

Java-based solution for accessing, manipulating, and outputting XML data from Java code.
Java framework for building Semantic Web i applications.

Java regression test framework.

Runtime logging services.

Text search engine library written in Java.

Provides support for regular expression-based queries.

Provides stemming support for indexed concepts.

Provided by the Sun JavaMail API E¥ . Used for e-mail notification when runtime errors occur.
JDBC drivers for MySQL database.

Used internally by LexBIG load and export extensions to access and manipulate Eclipse Modeling Framework (EMF) & mo
del representations.

JDBC drivers for PostgreSQL database.

Used for graph representations in the LexBIG GUI.
Provides the underlying widget toolkit used by the LexBIG GUI.

XML parsing services.

http://java.sun.com/javase/technologies/desktop/javabeans/jaf/index.jsp
http://www.cancer.gov/policies/linking
http://java.sun.com/javase/technologies/desktop/javabeans/jaf/index.jsp
http://www.cancer.gov/policies/linking
https://cabig.nci.nih.gov/workspaces/Architecture/caGrid
http://commons.apache.org/cli/
http://www.cancer.gov/policies/linking
http://commons.apache.org/codec/
http://www.cancer.gov/policies/linking
http://commons.apache.org/collections/
http://www.cancer.gov/policies/linking
http://commons.apache.org/lang/
http://www.cancer.gov/policies/linking
http://commons.apache.org/logging/
http://www.cancer.gov/policies/linking
http://commons.apache.org/pool/
http://www.cancer.gov/policies/linking
http://savannah.gnu.org/projects/gnu-regexp/
http://www.cancer.gov/policies/linking
http://hsqldb.org/
http://www.cancer.gov/policies/linking
http://www-01.ibm.com/software/globalization/icu/index.jsp
http://www.cancer.gov/policies/linking
http://jakarta.apache.org/regexp/
http://www.cancer.gov/policies/linking
http://www.toedter.com/
http://www.cancer.gov/policies/linking
http://www.jdom.org/
http://www.cancer.gov/policies/linking
http://jena.sourceforge.net/
http://www.cancer.gov/policies/linking
http://www.w3.org/2001/sw/
http://www.cancer.gov/policies/linking
http://www.junit.org/
http://www.cancer.gov/policies/linking
http://logging.apache.org/log4j/1.2/index.html
http://www.cancer.gov/policies/linking
http://lucene.apache.org/java/docs/
http://www.cancer.gov/policies/linking
http://java.sun.com/products/javamail/
http://www.cancer.gov/policies/linking
http://java.sun.com/products/javamail/
http://www.cancer.gov/policies/linking
http://mmmysql.sourceforge.net/old-index.html
http://mmmysql.sourceforge.net/old-index.html
http://www.cancer.gov/policies/linking
http://www.eclipse.org/
http://www.cancer.gov/policies/linking
http://www.eclipse.org/modeling/emf/
http://www.cancer.gov/policies/linking
http://jdbc.postgresql.org/
http://jdbc.postgresql.org/
http://www.cancer.gov/policies/linking
http://www.prefuse.org/
http://www.cancer.gov/policies/linking
http://www.eclipse.org/swt/
http://www.cancer.gov/policies/linking
http://xerces.apache.org/
http://www.cancer.gov/policies/linking

Appendix C Additional Terms and Conditions

Refer to the license.pdf and license.txt files (installed to the LexBIG root directory) for the license terms and conditions of included components.

	LexBIG 1.0.2 Developer's Technical Guide

