LexEVS 5.0 Programmer's Guide

This document is intended for developers looking for more information regarding the LexEVS API.

Contents of this Page

® Software Requirements
® Setting up your Environment
® LexEVS API

[e]
[e]

Core Services
Service Extensions
" Query Extensions
" Load Extensions
= Export Extensions
" |ndex Extensions
® Generic Extensions
Utilities
" |terators
® Search Algorithms
Additional Utility Classes
Code Examples
® Concept Resolution
" Service Metadata Retrieval
Combinatorial Queries
= Declaring the Target Concept Space
Applying Filter Criteria
Using the Lucene Query Syntax and Other Text Matching Functions
Applying Sorting Criteria
Restricting the Information Returned for Matching Items
Retrieving the Result
Additional Resources
LexEVS GUI
Launching the GUI
Overview
Creating New Queries
Customizing Queries
Working with Code Sets
Working with Code Graphs
Viewing Query Results

® |exEVS caCORE Data Services API

[e]
[e]
[e]

Interacting with caCORE LexEVS
caCORE LexEVS Components
LexEVS Data Sources

® NCI Thesaurus

" NCI Metathesaurus
Interfaces

" | exEVSDistributed

® |exEVSDataService

" LexEVSService
Search Paradigm

® Querying the System

" QueryOptions

= Examples of Use
Web Services API

= Configuration

® Building a Java SOAP Client
XML-HTTP API

® Service Location and Syntax

= Examples of Use

" Working with Result Sets
Distributed LexEVS API

" Overview
Architecture
LexEVS Annotations
Aspect Oriented Programming Proxies
LexEVS API Documentation
LexEVS Installation and Configuration
Example of Use

® |LexEVS Analytical Grid Service API
© Using the API
© Method Descriptions
= getCodingSchemeConcepts
= getFilter
getSortAlgorithm
getFilterExtensions
getServiceMetadata
getSupportedCodingSchemes
getLastUpdateTime
resolveCodingScheme
getNodeGraph
getMatchAlgorithms
getGenericExtensions
getGenericExtension
getHistoryService
getSortAlgorithms
resolveCodingSchemeCopyright
setSecurityToken
O Usage Instructions
" Service URL
" Required Libraries
= Downloads
© Code Examples
= Example Client and Service Calls and SOAP Messages
= Example API Usage
© Error Handling
® Error Connecting to LexEVS Grid Service
" LexEVS Errors
" |nvalid Service Context Access
O Security Issues
® LexEVS Grid Service Security
= Accessing Secure Content
" |mplementation
® LexEVS Data Grid Service API
© The LexEVS Data Grid Service
© caGrid Data Service Documentation
© Querying the System
® Query for a Concept with a Specific Code
= Query for a Concept with Specific Presentation Text
® Restrict Results to Specific Attributes

Software Requirements

Information regarding the software requirements LexEVS can be found in the LexEVS 5.x Installation Guide.

Setting up your Environment

Information regarding the installation and configuration of the LexEVS environment can be found in the LexEVS 5.x Installation Guide.

LexEVS API

Programming interfaces for the system fall into three primary categories:

® Core Services - Includes the LexBIGService, LexBIGServiceManager, CodedNodeSet and CodedNodeGraph classes, which provide the initial
entry points for programmatic access to all system features and data.

® Service Extensions - The extension mechanism provides for pluggable system features. Current extension points allow for the introduction of
custom load and indexing mechanisms, unique query sort and filter mechanisms, and generic functional extensions which can be advertised for
availability to client programs.

® Utilities - Utility classes, such as those implementing iterator support, are provided by the system to provide convenience and optimize the
handling of resources accessed through the runtime.

Core Services

Provides central entry points for programmatic access to system features and data.

https://wiki.nci.nih.gov/display/LexEVS/LexEVS+5.x+Installation+Guide
https://wiki.nci.nih.gov/display/LexEVS/LexEVS+5.x+Installation+Guide

clazs LexBIGService -

Sermlizmble

winterface»
LexBlGService:'LexBIGSeivice

getCodingSchemeConcepts|String, CodingSchemeVersionOrTag) © CodedNodeSet
getCodingSchemeConcepts(String. CodingSchemeVersioniTag. boolean) : CodedNodeSeat
getFiiter String) Filter

getFifterExtensions() . ExtensionDescriptionList

getGenericExtension{String) - GenericExtension

getGenericExtensions() : ExtensionDescriptionList

getHistoryService(String) : HistoryService

getLastUpdateTime() : Date

gethMatchAlgorthms() - ModuleDescriptionList

gethlodeGraph(String. CodingSchemeVersionQrTag, String) : CodedNodeGraph
gethlodeSet{String, CodingSchemeVersionOrTag. LocalNamelist) : CodedNodaSeat
getServiceManager|{ Object) : LexBIGServiceManager

getServicelMetadatal) ; LexBiGServiceMetadata

getSortAlgorithm(String) - Sort

getSortAlgorithms(SortContext) - SortDescriptionList
getSupportedCodingSchemes() : CodingSchemeRenderingList
resolveCodingScheme(String, CodingSchemeVersionOrTag) : CodingScheme
resolveCodingSchemeCopyright{String. CodingScheme\VersionOrTag) @ String

+++++++++F+F

Components of interest include:

® CodedNodeGraph - A virtual graph where the edges represent associations and the nodes represent concept codes. A CodedNodeGraph
describes a graph that can be combined with other graphs, queried or resolved into an actual graph rendering.

® CodedNodeSet - A coded node set represents a flat list of coded entries.

® LexBIGService - This interface represents the core interface to a LexEVS service.

® LexBlIGServiceManager - The service manager provides a single write and update access point for all of a service's content. The service
manager allows new coding schemes to be validated and loaded, existing coding schemes to be retired and removed and the status of various
coding schemes to be updated and changed.

® LexBlIGServiceMetadata - Interface to perform system-wide query over optionally loaded metadata for loaded code systems and providers.

Service Extensions

Provides registration and lookup for pluggable system features.

cd Extensions -

winterfaces winterfaces
ExtensionRegistry Extendable
~ getExportExtension(Sinng) : ExtensionDezcnplion ~ getDeecriplicn(] : Sinng
~ gelExporExtensions() ; ExtensionDescriptionl izt ~ geiName() ; Siring
~ geiFilierExtenszion{Sinng] ; ExtenzionDescription ~ getProviden]) : Siring
~ geiFilterExtensions(] : ExtenzionDescriptionl izt ~ getWersion(j ; Sinng

~ getGenerctxiension|Sinng) ;- ExenzionDezcrption
~ getGenencExfenzions() © ExensionDezcnpiionl izt

~ getindexExtension{Sinng) ; ExtensionDescripiion

~ getindexExtensions(} ; ExtensionDescripiionlist

~ gefl oadExtension(Sinng) ; ExtenzionDescrption

~ gelloadExiensionsz(] ;| ExtenzicnDezcripliionl izt

~ getSorntxtenzion{Sinng) | SonDezenpiion

~ getSorExtenzions(} - SorfDezcriptionlist

~ regizsterExpornExtenzionExtenzicnDezcription) ; void
~ regizterFilterExtension|ExtensionDeecription) © void
~ regizsterGensricExiension/ExtensionDezcnpliion) void
~ registerdndexExtenszion/ExtensionDeszcription) ; void
~ register cadExtension(ExtensionDescription) © void
~ regizterSorCxienzion{SonDezcrpiion) © void

~ unregizterCxporiCxiension|Sirnng) & void

~ unregizterFilterExtension{Sinng) : void

~ unregisterGenencExtension|{Sinng) ; void

~ unregisterdndexExtenesion]Sinng) © void

~ unregizier cadExiension|sSinng) © void

~ unregizterSorCxtension{Sinng) ;| void

Components of interest include:
® ExtensionRegistry - Allows registration and lookup of implementers for extensible pieces of the LexEVS architecture.

® Extendable - Marks a class as an extension to the LexEVS application programming interface. This allows for centralized registration, lookup,
and access to defined functions.

Query Extensions

Query extensions provide the ability to further constrain or manage query results.

cd Guery -

Extendabie Extendsbl=
Comparator winterfacexs

winterfaces Filter
Sort ~ match{RezolvedConceptReference) - boolean

Components of interest include:

® Filter - Allows for additional filtering of query results.
® Sort - Allows for unique sorting of query results. This interface provides a comparator to evaluate order of any two given items from the result set.

Load Extensions

Load extensions are responsible for the validation and import of content to the LexEVS repository. Vocabularies may be imported from a variety of formats
including LexGrid canonical XML, NCI Thesaurus (OWL), and NCI MetaThesaurus (UMLS RRF).

td Load

wineriscee

Lexlrid_Loadar

wnEriaee
NCI_Metz Thesaurusl oader

smefaee

UMLS Loadar

s ez e

sneEriacze

Wetalata Loader

anEriace

0B0HistoryLoader

Components of interest include:

® Loader - The loader interface validates and/or loads content for a service.

® LexGrid_Loader - Validates and/or loads content provided in the LexGrid canonical XML format.

® NCI_MetaThesaurusLoader - Validates and/or loads the complete NCI MetaThesaurus. Content is supplied in RRF format. Note: To load
individual coding schemes, consider using the UMLS_Loader as an alternative.

® OBO_Loader - Validates and/or loads content provided in Open Biomedical Ontologies (OBO) text format.

® OWL_Loader - Validates and/or loads content provided in Web Ontology Language (OWL) XML format. Note that for LexEVS phase 1 this loader
is designed to specifically handle the NCI Thesaurus as provided in OWL format.

® Text_Loader - A loader for delimited text type files. Text files come in one of two formats: indented code/designation pair or indented code
/designation/description triples.

® UMLS_Loader - Load one or more coding schemes from UMLS RRF format stored in a SQL database.

®* MetaData_Loader - Validates and/or loads content provided in metadata xml format. The only requirement of the xml file is that it be a valid xml

file.

® NCIHistoryLoader - A loader that takes the delimited NCI history file and applies it to a coding scheme.
® OBOHistoryLoader - Load an OBO change history file.

Export Extensions

Export extensions are responsible for the export of content from the LexEVS repository to other representative vocabulary formats.

cd Export -~

Exiendable
winterfacex
Exporter
+ clearlog() : void
+ getflogfiloglevel) : LogEmin]
+ geiReferencesz(] ; URI]
+ getSiatuzs(] : ExpornSiatus

AN

winterfaoes
Lex Grid_Exporter
+ exporfAbzcluteCodingScheme VersicnReference, URI, boolean, boolean, boolean) © void
+ getSchemsURL(@ URY
+ getSchemaVerzion(] : Siring

zinterfaces
OBO_Exporter
+ exporfAbzcluteC odingSchemeVerzionReference, URS, boolean, boolean, boolean) @ void
+ gelf0OBOVerzion() - Sirng

winterfaces
OWL_Exporter
+ exporfAbzcluteCodingScheme VersionReference, URN, boolean, boolean, boolean) © void

Components of interest include:
Exporter - Defines a class of object used to export content from the underlying LexGrid repository to another repository or file format.
LexGrid_Exporter - Exports content to LexGrid canonical XML format.

L]

L]

® OBO_Exporter - Exports content to OBO text format.
® OWL_Exporter - Exports content to OWL XML format.

Index Extensions

Index extensions are built to optimize the finding, sorting and matching of query results.

cd Index .~

Losder
winterfaces
IndexLoader

+ cleamAbzoiuieCodingSchemeVersionReference, index, boclean) - void
+ lpadiAbeoiuteCodingScheme VersionReference, index, boolean, boolean) . void
+ rebuildjAbzcluteCodingSchemeVersionReference, index, boolean) : void

Extendshie
winterfaces
Index

+ getloaden) : Indexl oader
+ [locateMsaichingDeszignations(CodedNode5ed, Siring, boolean, Sinng) ;| CodedNodeSet
+ [locafteMaichingProperiez{CodedNode Setl, LocalNamelizt, Sinng, Sinng) : CodedNodeSet

Components of interest include:
® Index - Identifies expected behavior and an associated loader to build and maintain a named index. Note that a single loader may be used to
maintain multiple named indexes.

®* IndexLoader - Manages registered index extensions. A single loader may be used to create and maintain multiple indexes over one or more
coding schemes. It is the responsibility of the loader to properly interpret each index it services by name, version, and provider.

Generic Extensions

Generic extensions provides a mechanism to register application-specific extensions for reference and reuse.

cd Generic

Extendsbls
winterfaces
GenerncExtension

winterfaces
LexBiIG ServiceConveniencellethods

~ codeToNsme|Sinng, Sinng, CodingSchemeVerzionOrTag) @ Siring

~ cresfeCodeNodeSef{Sinng(], Sirng, CodingSchemeVersionOrTag) - CodedNodeSet

~ getChildrenOfSinng, Sirng, Sinng, Sinng, CodingSchemeVerzionCOrTag, boolean) : Azsociation
~ getEndNodesz(Sinng, CodingSchemeVersionOrTag, Siring, Sirnng) ;| ResolvedConcepiReferencel izt
~ geiParentz0OfSinng, Sinng, Sinng, String, CodingSchemeVersionOrTag, boolean) : Aszocisticn

~ geiRenderngDetail{Sinng, CodingSchemeVersionCOrTag) | CodingSchemeRendening

~ geiTopNodesz|(Sinng, CodingSchemeVersionOrTag, Siing, Sinng) © RezclvedConcepiReferencel izt
~ izCodeRetired{Sinng, Stning, CodingSchemeVerzionCrTag) © boolean

~ nameToCode(Sinng, Sinng, CodingSchemeVersionOiMag) @ Sirning

Components of interest include:

® GenericExtension - The generic extension class. Classes that implement this class are accessible via the LexBIGService interface.
* LexBIGServiceConvenienceMethods - Convenience methods to be implemented as a generic extension of the LexEVS API.

Utilities
Defines helper classes externalized by the LexEVS API.

Iterators

Iterators are used to provide controlled resolution of query results.

cd lterators

winterfaoes
EntityListterator

+ hasMexi]) : boolesn
+ numberRemaining() ; int
+ relesee() | void

winterfases
ResolvedConceptReferencesiterator

Components of interest include:

® EntityListlterator - Generic interface for flexible resolution of LexEVS objects.
®* ResolvedConceptReferenceslterator - An iterator for retrieving resolved coding scheme references.

Search Algorithms
Supported LexEVS Search Algorithms

Search Algorithm

Name: LuceneQuery

Version: 1.0

Description: Search with the Lucene query syntax.

See http://1ucene. apache. org/javal/ 2_3_2/ queryparsersyntax. ht m

Search Algorithm

Nane: Doubl eMet aphoneLuceneQuery

Version: 1.0

Description: Search with the Lucene query syntax, using a 'sounds |ike' algorithm
A search for 'atack' will get a hit on 'attack'

See http://1ucene. apache. org/javal 2_3_2/ querypar ser synt ax. ht n

Search Algorithm

Nanme: StemmedLuceneQuery

Version: 1.0

Description: Search with the Lucene query syntax, using stenmed terns.
A search for 'trees' will get a hit on '"tree'

See http://lucene. apache. org/javal/ 2_3_2/ queryparsersyntax. ht m

Search Algorithm

Nane: startsWth
Version: 1.0
Description: Equivalent to 'ternt' (case insensitive)

Search Algorithm

Nare: exact Match
Version: 1.0
Description: Exact match (case insensitive)

Search Algorithm

Nane: contains

Version: 1.0

Description: Equivalent to '* ternf *' - in other words - a trailing wildcard on a term
(but no leading wild card) and the term can appear at any position.

Search Algorithm

Nane: RegExp

Version: 1.0

Description: A Regul ar Expression query. Searches against the |owercased text, so a
regul ar expression that specifies an uppercase character will never return a natch.
Addi tionally, this searches against the entire string as a single token, rather than
the tokenized string - so wite your regul ar expression accordingly.

Supported syntax is docurmented here:

http://jakarta. apache. or g/ regexp/ api docs/ or g/ apache/ r egexp/ RE. ht m

Additional Utility Classes

It is highly recommended that all LexEVS programmers familiarize themselves with the classes contained in the org. LexGri d. LexBI G Wility
package. Many useful features are provided in an effort to increase approachability of the APl and assist the programmer in common tasks. This package
currently contains the following classes:

® Constructors - Helper class to ease creating common objects.

® ConvenienceMethods - One-stop shopping for convenience methods that have been implemented against the LexEVS API.
® LBConstants - Provides constants for use in the LexEVS API.

® ObjectToString - Provides centralized formatting of LexEVS Objects to String representations.

Code Examples

Concept Resolution

Programmers access coded concepts by acquiring first a node set or graph. After specifying optional restrictions, the nodes in this set or graph can be
resolved as a list of ConceptReference objects which in turn contain references to one or more Concept objects. The following example provides a simple
query of concept codes:

Java Code Snippet

/1 Create a basic service object for data retrieval
LexBl GService | bSvc = LexBI GServi cel npl . def aul t1 nstance();

/1 Create a concept reference |list appropriate for this coding schene and

/1 this concept code where the paraneters are a String array consisting of

/1 a single value and the name of the coding schene where this concept resides.

Concept Ref erencelLi st crefs = Conveni enceMet hods. cr eat eConcept Ref er encelLi st (
new String[], SAWMPLE_SCHEME);

/1 Initialize a coding schene version object with a version nunber for the
/1 sanpl e scheme.

Codi ngScheneVer si onOr Tag csvt = new Codi ngScheneVer si onOr Tag() ;

csvt. set Ver si on(VERSI ON) ;

/Il Initialize a CodedNodeSet Object with all concepts in our sanple coding

/'l scherme. (W nanmed the scheme we wanted and by using the Bool ean val ue,

/1 false, retrieved both active and inactive concepts.) This nethod call

/1 ignores the version tag using the null parameter. The final

/1 restrictToCodes(crefs) nethod call restricts the return to the single

/1 code in the previously initialized |ist of one.

CodedNodeSet nodes = | bSvc. get Codi ngSchenmeConcept s(SAMPLE_SCHEME, csvt).
restrictToCodes(crefs);

/1 Build a list of references fromthe current (and already restricted) set
/1 and restrict themfurther to the single property of NCI_NAVE and
/1 restrict to a single answer (paraneter 1)).
Resol vedConcept Ref er enceLi st mat ches = nodes. resol veToLi st (
nul |, Conveni enceMet hods. creat eLocal NanmeLi st ("FULL_SYN'), 1);

/| Does our list of one contain the single reference we were |ooking for?

/1 1f so, then initialize a Resol vedConcept Reference with the result and

/1 initialize a Concept object by calling the getReferencedEntry()

/1 method. The Concept object is the base information nodel object and

/1 contains, anong other things, the CONCEPT_NAME val ue we were seeking.

/1l W retrieve it with a call to the first element in the properties |ist,

/1 getting the text & it's acconpanying content.

i f (mat ches. get Resol vedConcept Ref erenceCount () <> 0)

{ Resol vedConcept Ref erence ref = (Resol vedConcept Ref er ence) mat ches.
enuner at eResol vedConcept Ref erence() . next El ement () ;

Concept entry = ref.get ReferencedEntry();

System out. println("Mtching synonym " +
entry. getPresentation(0).getValue()); }
el se
{ Systemout.println("No match found"); }

Service Metadata Retrieval

The LexEVS system maintains service metadata which can provide client programs with information about code system content and assigned copyright
llicensing information. Below is an brief example showing how to access and print some of this metadata:

Java Code Snippet

/1 W can get a Codi ngScheneRenderi ngLi st object directly from LexBi gService
LexBI GService | bs = LexBl GServi cel npl . defaul t1nstance();
Codi ngSchenmeRender i ngLi st scheneLi st = | bs. get Support edCodi ngSchemes();

for (Codi ngSchemeRendering csr : scheneLi st. get Codi ngSchemeRendering())

{
Codi ngSchemeSummary css = csr. get Codi ngScheneSunmary();

/1 Print separator then details fromthe Codi ngScheneSunmary
System out . println(" ")
System out. println(CbjectToString.toString(css));

/1 Set up a coding schene reference to resolve Copyri ght
String urn = css. get Codi ngScheneURI () ;
String version = css. get RepresentsVersion();
Codi ngScheneVer si onOr Tag csVorT =
Constructors. creat eCodi ngScheneVer si onOr TagFr onVer si on(ver si on) ;
Codi ngSchenme cs = | bs. resol veCodi ngSchenme(urn, csVorT);
Systemout. println("Copyright: " +cs.getCopyright().getContent());

/Il Get the final details fromthe RenderingDetail
RenderingDetail rd = csr.getRenderingDetail();
System out. println(CbjectToString.toString(rd));
Systemout.printin();

Combinatorial Queries

One of the most powerful features of the LexEVS architecture is the ability to define multiple search and sort criteria without intermediate retrieval of data
from the LexEVS service. Consider the following code snippet:

Java Code Snippet

System out . println("Exanpl e double restriction query with additional "
+"application of sort criteria and restricted return values.");
/| Declare the service...
LexBl GServi cel npl | bs = LexBl GServi cel npl. defaul tlnstance();

/1 Start with an unconstrained set of all codes for the vocabul ary
Codi ngScheneVer si onOr Tag csvt = new Codi ngScheneVer si onOr Tag() ;

csvt . set Ver si on(VERSI O\2) ;

CodedNodeSet cns = | bs. get Codi ngScheneConcept s(SAMPLE_SCHEME2, csvt);

// Constrain to concepts with designations (assigned text presentations
/1 that contain text that sounds |ike 'Short Saphenous Vein'
cns = cns.restrict ToMat chi ngDesi gnati ons(
"Short Safinus Vane",
Sear chDesi gnati onOpti on. ALL,
Mat chAl gori t hns. Doubl eMet aphoneLuceneQuery. toString(),
null);

/1 Further restrict the results to concepts with a semantic type of
/1 ' Anatomical Structure'
cns = cns.restrict ToMat chi ngProperties(

Constructors. createLocal NaneLi st (" Semantic_Type"),

null, "Anatom cal Structure",
"exact Mat ch",
null);

/1 Indicate that the resulting list should be sorted with the best

Il results first and then sorted by code if there is a tie.

Sort OptionList sortCriteria = Constructors. createSortOptionList(
new String[] {"matchToQuery", "code"});

/1 Indicate to return only the assigned UML.S_CU and

/'l textual Presentation properties.

Local NareLi st restrict To =Conveni enceMet hods. cr eat eLocal NameLi st (
new String[] {"UMLS_CU ", "textual Presentation"});

/1 Still nothing conmputed yet.

/1 Performthe query && resolve the sorted/filtered list with a
/1 maxi mum of 6 itens returned.

Resol vedConcept Ref erenceLi st |ist = cns.resol veToLi st (

sortCriteria, restrictTo, null, 6);
/1 Print the results
Resol vedConcept Ref erence[] rcr = |ist.getResol vedConcept Ref erence();
for (Resol vedConcept Reference rc : rcr)
{
System out. println("Resol ved Concept: " + rc.getConcept Code());
}

This example shows a simple yet powerful query to search a code system based on a 'sounds like' match algorithm (the list of all available match
algorithms can be listed using the 'ListExtensions -m' admin script).

Declaring the Target Concept Space
The coded node set (variable ‘cns') is initially declared to query the NCI Thesaurus vocabulary. At this point the concept space included by the set can be

thought of as unrestricted, addressing every defined coded entry (the 'false' value on the declaration indicates to also include inactive concepts). However,
it important to note that no search is performed by the LexEVS service at this time.

Applying Filter Criteria
Similarly, no computation is performed (to realize query results) during invocation of the r est ri ct ToMat chi ngDesi gnati ons() andrestri ct ToMatc

hi ngProperties() methods. However, these calls effectively narrow the target space even further, indicating that filters should be applied to the
information returned by the LexEVS query service.

Using the Lucene Query Syntax and Other Text Matching Functions

The text criteria applied in methods such as rest ri ct ToMat chi ngDesi gnati ons() uses one of a number of powerful text processing applications to
provide the user with broad capability for text based searches. Text matches can be simple applications of exactMatch, startsWith or contains algorithms
as well as powerful regular expressions and Lucene Query syntax (used in the LuceneQuery function.) As shown above these options are passed into the r
estrict ToMat chi ngDesi gnati ons() Method as parameters.

Lucene Queries are well documented and can be very powerful. The uninitiated user may need some background on their use however. The user should
start here with the official Lucene Query Parser documentation.

Li nk provided for historical purposes http://lucene.apache.org/javal2_3_2/queryparsersyntax. htnl

Keep in mind that some LexEVS queries such as "startsWith" and "contains" use wild card searches under the covers, so that use of wild cards in this
context can cause errors in searches involving these search types.

Instead it is best to use the flexibility of the Lucene Query searches in the matchingDesignation by using the Lucene Query searches in LexEVS where
most searches will work much as described in the query syntax documentation.

Special characters in the Lucene Query search can cause unexpected results. If you are not using special characters as recommended for various Lucene
search mechanisms then your searches may not return expected results or may return an error. If the value you are searching upon contains say,
parenthesis, you will need to place the value in quotations. The escape characters described in the Lucene Documentation do not work at this time.

Likewise you should not expect to see a Lucene Query narrow down search results as you progressively enter a longer substring more closely matching
your term of interest. Instead use the contains method.

Applying Sorting Criteria

Multiple sort algorithms can be applied to control the order of items returned. In this case, we indicate that results are to be sorted based on primary and
secondary criteria. The "matchToQuery" algorithm indicates to sort the result according to best match as determined by the search engine. The "code"
item indicates to perform a secondary sort based on concept code.

@ Note

The list of all available sort algorithms can be listed using the 'ListExtensions -s' admin script.

Restricting the Information Returned for Matching Items

The LexEVS API also allows the programmer to restrict the values returned for each matching concept. In this example, we chose to return only the UMLS
CUI and assigned text presentations.

Retrieving the Result

A query is finally performed during the 'resolve’ step, with results returned to the declared list. It is at this point that the LexEVS service does the heavy
lifting. By declaring the full extent of the request up front (namespace, match criteria, sort criteria, and returned values), the service then has the
opportunity to optimize the query path. In addition, in this example we restrict the number of items returned to a maximum of 6. This combined approach
has the benefit of reducing server-side processing while minimizing the volume and frequency of traffic between the client program and the LexEVS
service.

@ Note

While this section provides one example of combining criteria, this same pattern can be applied to many of the CodedNodeSet and
CodedNodeGraph operations. It is strongly recommended that programmers familiarize themselves with this programming model and its
application.

Additional Resources

The examples and automated test programs provided by the LexEVS installation (see the file breakdown in the section, #Overview) are available as
additional reference materials.

LexEVS GUI

The LexEVS Graphical User Interface, or GUI, is an optional component of the LexEVS install which will be in the /gui folder of the base LexEVS
installation (see file breakdown in the section, #Overview). The GUI is meant to provide a simple tool to test LexEVS API methods and quickly view the
results; almost all public methods defined by the LexEVS API are supported. This guide provides a brief overview of how the GUI can aid programmers in
writing code to the LexEVS API.

@ Note

The LexEVS GUI supports both administrative and test functions. Please refer to the LexEVS Administrator's Guide for instructions on using the
GUI as an administration tool.

Launching the GUI

Depending on the operating systems that you selected at installation time, you should have one or more of the following programs in the / gui folder:

Li nux_64-1bGU . sh
OSX- | bGUI . command

Li nux-1 bGUJl . sh
W ndows- | bGUI . bat

Launch the GUI by executing the appropriate script for your platform. You will be presented with an application that looks like this:

'® LexBIG Console

Commands Load Terminalogy Expork Terminology. Help

=10l x|

Awailable Code Systems

Code System Mame | Code Sysken Version I LRI | Tag | Stakus | Last Lipdate Time Gek Code Set |
iThesaurus. awl 05,09, byt Rkt fincich, nai. nib, gose femlfowliE. inackive Si31:35 AMon 10012/

MNCI Thesaurus 10.07e httpe ffncich, ni. nib, gose fxmlfowliE. . active 10:41:17 &M on 09)20; &et Code Graph |
MNCI Thesaurus 10.10a Rtk fincich . nai. nib, gosefemlfowl/E,.. | PRODUCTION | active S:11:07 AM on 100142

Zebrafish 1.2_June_14_2010 http: ffncich. nci.nib. govefxmins/zehb. .. active 1:17:29 PMon 09/26/2 Gek Hiskary |
Manoparticle Ontology 1.0_Jan_29_ 2010 http: ffpurl. bioontlogy. orgfontolog. .. active Qid6:21 AMon 104212

fungal_anatomy IIMASSIGMNED urnilsid:bioontology, org:fungal_a... active 10;17:08 AM on 10/04; Refresh |
Gene Cntology Ockoberz2010 urn:lsid:bioontology. org: GO PRODUCTION | active 6:50:03 AMon 1of21f: —/—————————————
autos 1.0 urmioidi11.11,0.1 PRODUCTION | inackive

urnioid:11.11.0.1,1-extension inactive
urmioidi2, 16.640,1.113583.3.26.1.2 active
urnioid:2, 16,840,1,113883.6.1 PRODUCTION | active

Autornobiles Extension 1.0-extension
MZI Metathesaurus 200601
Logical Observation Iden... 229

10:10:41 AM on 10/04)

Load Marifest |
7:53:43 AM on 10715)z 0
10:51:33 AM on 09/21)

change T |
£:55:30 AM on 09/20/3 SR

Logical Observation Iden... 226 urmioid:2, 16.840,1,113883.6.1 inackive 7126107 PM on 09/27)2 oD |
Current Procedural Termi... | 2010 urnioid:2, 16.840,1.113883.6.12 active 1:08:15 PM on 10/06/2

Medical Dictionary For Re... 12.0 urn:oid: 2, 16.840.1.113883.6.163 active :25:32 AM on 09242 e ackivate |
ICD 9 M 1.0 urn;oidi2, 16.540,1,113883.6.2 active 1:06:36 PM on 10/06/2

SMOMED Clinical Terms, ... 2010_01_31 urm:oid: 2, 16.840.1.113883.6.96 active 6:05:03 PM on 09/18/2 T |
SNOMEDCT _2010_01_3... 20100131 urnioid:C2733618, SNOMEDCT.IC. ., active 6:11:09 AM on 10f25)2
MOR:MDR1Z2 1 T ICD.., 200909 urn:oid: CL41 3320, MDA, ICDACM active 1:32:43 PM on 107142 Remave History |
MDR:MDR12 1 T (CST.., 200909 urnioid:CL413321,MDR..CST active 1:32:01 PMon 10/14/2

MCIE bo ICDCM Mapping 1.0 urm:oid:MCIE_ko_ICD9CM_Mapping active

1:03:55 PM on 10/06)2 A e |
Reebuild Indes |

5Selected CodedModeSets and CodedModeGraphs

{8 g]f=lg] |
Hdd

Interseckon |
Edit

Difference |

Remoye

Restrick o Codes |
Rstbo Source Codes |
Fsttm Target Godes |

Remoye |
LaExpart |

Restrictions

HE

You must choose a single Code Set or Graph on the left,

Overview

The upper section of the GUI shows all of the code systems currently loaded, along with corresponding metadata. The lower section of the GUI is used to
combine, restrict and resolve Code Sets and Code Graphs.

The lower left section is where you can perform Boolean logic on Code Sets and Code Graphs. The lower right section is where you can introduce
restrictions on Code Sets and Code Graphs and browse results.

@ Note

The menu options are used primarily for administrative functions, and are covered in detail by the LexEVS Administrator's Guide. In addition, all
of the disabled buttons in the top half of the application are used for administrative functions, and are also described in the LexEVS
Administrator's Guide.

Creating New Queries
There are four buttons on the top half that are of interest for creating queries.

® Refresh - This button causes the LexEVS GUI to reread the available terminologies and their respective metadata. This can be useful when
using the GUI to view a LexXEVS environment that is being modified by another process.

® Get History - If a terminology with available history data is selected, this button opens a history browser to view it via the NCI history API. This
option is currently only applicable when working with the NCI Thesaurus terminology.

® Get Code Set - This button causes the selected terminology to be added to the lower left section of the GUI as a code set - which is noted by a
'CS' prefix.

® Get Code Graph - This button causes the selected terminology to be added to the lower left section of the GUI as a code graph - which is noted
by a'CG' prefix.

Customizing Queries

After selecting a code system and clicking on Get Code Set or Get Code Graph, a row will be added to the lower left section of the GUI for each click.
There are seven buttons in the lower left section that allow combinatorial logic between the code sets in the lower left.

® Union - This button is enabled if two Code Sets or two Code Graphs are selected in the lower left. Clicking the button creates a new virtual Code
Set or Code Graph which represents the Boolean union of the two selected items. All restrictions applied to the individual items still apply.

® Intersection - This button is enabled if two Code Sets or two Code Graphs are selected in the lower left. Clicking the button creates a new virtual
Code Set or Code Graph which represents the Boolean intersection of the two selected items. All restrictions applied to the individual items still
apply.

® Difference - This button is enabled if two Code Sets or two Code Graphs are selected in the lower left. Clicking the button creates a new virtual
Code Set which represents the Boolean difference of the two selected Code Sets. All restrictions applied to the individual items still apply.

® Restrict to Codes - This button is enabled if a Code Set and a Code Graph are selected in the lower left. Clicking the button creates a new
virtual Code Graph which will be restricted to concept codes occurring in the selected Code Set.

® Restrict to Source Codes - This button is enabled if a Code Set and a Code Graph are selected in the lower left. Clicking the button creates a
new virtual Code Graph which will have its source codes restricted to codes occurring in the selected Code Set.

® Restrict to Target Codes - This button is enabled if a Code Set and a Code Graph are selected in the lower left. Clicking the button creates a
new virtual Code Graph which will have its target codes restricted to codes occurring in the selected Code Set.

® Remove - This button is enabled if any Code Set or Code Graph (or virtual Code Set or Code Graph) is selected in the lower left. Clicking the
button will remove the selected item from the list.

The lower right section of the GUI is used to apply restrictions to Code Sets or Code Graphs, and set the variables that need to be passed into the resolve
method.

Working with Code Sets

If a Code Set is selected in the lower left, then the lower right section will look like this:

ML SEER, 1L NEOPIST 008 ., | L9 UFMEOIg: 2, L 54U, L, INaceive T T o ——
MCI_Thesaurus 03.12a urnioid:2,16.840,1... PRODUCTION active 10:36:35 AM on 10
SMODEMT 2000 SMODENT ackive 10:15:21 &M on 0f

Deachivate

Remaove |
Hemove Histors: |
‘J | -ﬂ Rebuild Index |

Selected CodedModeSets and CodedModeGraphs Restrictions

Automabiles 1.0 Coded Mode Sek 0 - Automobiles 1,0
Urier |
Intersection |

- Edit
Difference |
Remaove |

Hestrick bo Godes

[only Include Active Codes

Est ko Source Eodes I
st bo Target Codes |

Remove |

Set Sort Options | Resclve Code Set

In the lower right section, there are two halves - the top half and the bottom half. The top half is used to apply restrictions. The bottom half provides query
options and resolution.

® Add - This button introduces a new restriction to the Coded Node Set. Clicking it will bring up the following dialog box for creating restrictions:
Bl Configure Restriction

Restriction Tvpe =

Match Text I

Match Algorithm ILuceneQuery j

Match Language I j
Preferred Only [

Ok Zancel

The top drop down list indicates the type of restriction to add. The rest of the dialog box will change depending on the type of restriction selected.
All required parameters for the selected restriction type will be presented.

Edit - This button is enabled when a restriction is selected. Clicking it allows revision of an existing restriction.

Remove -This button is enabled when a restriction is selected. Clicking it removes the selected restriction.

Only Include Active Codes - This check box indicates whether or not to include inactive codes when resolving the selected code set.

Set Sort Options - This button will bring up a dialog box to choose the desired sort order of the results.

Resolve Code Set - This button will bring up a result window where the Code Set will be resolved and displayed.

Working with Code Graphs

If you select a Coded Node Graph in the lower left section of the LexEVS GUI, the lower right section will look like the following figure, which is described
in the text after the graphic:

L«

Remtyve History, |
| ﬂ Rehiild Trides |

Selected CodedModeSets and CodedModeGraphs Restrictions

0 (C5) - Aukornobiles 1.0 Coded Mode Graph 1 - Automobiles 1.0
- \dmion I

add
Inkersection |
= Eddlt: |
Cifkerence I

Remove |
Restrct kol Codes |
oo o] | peiston conconer I |

Estto Target Codes Forus Code |

Focus Code System I ﬂ
Remove | Max Resclve Depth [-1 IV Resolve Forward [Resolve Backward

Set Sort Options | Resolve as Set | Resolve as Graph |

Again, there are two halves to the lower right section. The top half allows restrictions to be applied to the selected Code Graph, and it works the same as it
does for a Coded Node Set. Please see the section above on applying restrictions to a Coded Node Set.

The lower half provides additional variables applicable when resolving a Coded Node Graph. For further explanation of these options, refer to the LexEVS
API documentation.

Relation Container (Optional) - Indicates the CodingScheme Relations container to query. The drop down list is populated with allowable
selections.

Focus Code (Optional) - Provides the code used as a starting point when resolving graph relations. This value is required for some queries,
depending on the nature of requested associations.

Focus Code System (Optional) - Indicates the code system containing the Focus Code. The drop down list is populated with allowable selections.
Max Resolve Depth - How many levels deep should the graph be resolved? -1 is the default, which does not limit the depth.

Resolve Forward - Populate codes downstream from the focus node (based on directionality defined by each association).

Resolve Backward - Populate codes upstream from the focus node (based on directionality defined by each association).

Set Sort Options - This button will bring up a dialog box to choose the desired sort order of the results.

Resolve As Set - Resolves and displays the graph results as a coded node set.

Resolve As Graph -Resolves and displays the graph results.

Viewing Query Results

Clicking on the Resolve buttons for either a Coded Node Set or a Coded Node Graph will bring up the Result Browser window:

BB Result Browser [_ O]

0001 - T oding Scheme: Automobiles - urneoid: 11.11.0.1 ;I

Ford - Fard Makar Company oncept Code: TOOO1
005 - Domestic Auto Makers ntity Description: Truck
73 - Cldsmobile tatus: 65

Z0001 - Car s Active: frue

A0001 - Aukomobile First Yersion: true

GM - General Motors 1 ast Yersion: true

Jaguar - Jaguar Presentation t1: Truck
Chewy - Chewrolet Is Preferred: true

Language: en
Match If Mo Context: true

TOOO1 ADD01
Truck L ALtomobile

The left side shows a list of all the concept codes returned. When a concept code is selected on the left, the upper right will show a full description of the
selected code. The lower right will show a graph view of the neighboring concepts.

When a Coded Node Graph is resolved, the result viewing window will look like this (this is the same Code System as above):

B Result Browser [_ O]

A0001 - Automobile]
TOOO1 - Truck,

a0t - Car

Brakes -

Tires -

Batteries -

005 - Domeskic Auto Makers
Ford - Ford Mokor Company LI
Jaguar - Jaguar

GM - General Motars

73 - Dldsmobile

Chewy - Chewrolet

TOOO1
Trucl:
COoo1
i L Car
AD001 PR Brales
Automobile ey
= Tires
'L!".-SJJ‘r,l\'.‘ (1=
top-thing Batteries
T Ford
003 s FOrd Motor Company
Domestic Auto Makers ... GM

General Motors

The left side still has a list of all of the concepts in the graph. The upper right will give a description of the selected concept. The lower right shows the
entire graph.

The lower right section is adjustable, and dynamic. It responds to mouse clicks, dragging, and numerous key combinations. Beyond a depth of 3, the graph
may "collapse" and not show all of the nodes until you click on a node. Clicking on a node will cause it to expand out and display its children. Here are a
list of key combinations recognized by the graph viewer:

Left Click + Mouse Movement - Drags the view.

Right Click + Mouse Movement Up Or Down - Zooms in or out.
Right Click (on white space) - Zooms the view to fit.

Ctrl + '+' - Expands the graph connection lines

Ctrl + '-' - Contracts the graph connection lines

Ctrl + 1" (or '2' or '3' or '4") - Changes the orientation of the graph.

LexEVS caCORE Data Services API

Interacting with caCORE LexEVS

This chapter describes the components of the caCORE LexEVS and the service interface layer provided by the EVS API architecture. It gives examples of
how to use the EVS APIs. It also describes the Distributed LexEVS API and the Distributed LexEVS APIAdapter.

caCORE LexEVS Components

The caCORE LexEVS APl is a public domain, open source wrapper that provides full access to the LexEVS Terminology Server. LexEVS hosts the NCI
Thesaurus, the NCI Metathesaurus, and several other vocabularies. Java clients accessing the NCI Thesaurus and Metathesaurus vocabularies
communicate their requests via the open source caCORE LexEVS APIs, as shown in the following figure.

& el = =
&1 [8
~HES 1=

Also supported. .. The Legacy Infrastructure

1 3 Evl vaiai

p T8
33 [] s E
soar{ € | caCORE 3.2 oTsRPC | 4 OTS | i E £
L e L I i I-_,_ =
= = s [F*——"ﬁ
« ledtapdwada '| %]
-

The open source interfaces provided as part of caCORE LexEVS 5.x include Java APIs, a SOAP interface, and an HTTP REST interface. The Java APIs
are based on the EVS 3.2 object model and the LexEVS Service object model.

The EVS 3.2 model, exposed as part of caCORE 3.2, has been re-released with LexEVS as the back-end terminology service in place of the proprietary
Apelon DTS back end. The SOAP and HTTP REST interfaces are also based on the 3.2 object model. The SDK 4.0 was used to generate the EVS 3.2
Java API, as well as the SOAP and HTTP REST interfaces.

The only difference between the EVS 3.2 API exposed as part of the caCORE LexEVS 5.x and the API exposed as part of caCORE 3.2 is the back-end
terminology server used to retrieve the vocabulary data. The interface (API calls) are the same and should only require minor adjustments to user
applications.

@ Note

You cannot integrate caCORE 3.2 components with caCORE LexEVS 5.x. If you used multiple components of caCORE 3.2 (for example, EVS
with caDSR), you need to continue to work with the caCORE 3.2 release until the other caCORE 4.0 components are available.

The LexEVS object model was developed by the Mayo Clinic. In its native form, the associated APl assumes a local, non-distributed means of access.
With caCORE LexEVS 5.x, a proxy layer enables EVS API clients to access the native LexEVS API from anywhere without having to worry about the
underlying data sources. This is called the Distributed LexEVS (DLB) API.

The DLB Adapter is another option for caCORE LexEVS 5.x clients who choose to interface directly with the LexEVS API. This is essentially a set of

convenience methods intended to simplify the use of the LexEVS API. For example, a series of method calls against the DLB API might equate to a single
method call to the DLB Adapter.

@ Note

The DLB Adapter is not intended to represent a complete set of convenience methods. As part of the caCORE LexEVS 5.x release, the
intention is that users will work with the DLB API and suggest useful methods of convenience to the EVS Development Team.

LexEVS Data Sources

The LexEVS data source is the open source LexEVS terminology server. EVS clients interface with the LexEVS API to retrieve desired vocabulary data.
The EVS provides the NCI with services and resources for controlled biomedical vocabularies, including the NCI Thesaurus and the NCI Metathesaurus.

NCI Thesaurus

The NCI Thesaurus is composed of over 27,000 concepts represented by about 78,000 terms. The Thesaurus is organized into 18 hierarchical trees
covering areas such as Neoplasms, Drugs, Anatomy, Genes, Proteins, and Techniques. These terms are deployed by the NCI in its automated systems
for uses such as key wording and database coding.

NCI Metathesaurus

The NCI Metathesaurus maps terms from one standard vocabulary to another, facilitating collaboration, data sharing, and data pooling for clinical trials and
scientific databases. The Metathesaurus is based on the Unified Medical Language System (UMLS) developed by the National Library of Medicine (NLM).
It is composed of over 70 biomedical vocabularies.

Interfaces

Main interfaces included in the LexEVSAPI package.

LexEVSDistributed

The Distributed LexEVS Portion of LexEVSAPI. This interface is a framework for calling LexEVS API methods remotely, along with enforcing security
measures. JavaDoc

LexEVSDataService

The caCORE-SDK Data Service Portion of LexEVSAPI. This extends on the caCORE ApplicationService to provide additional Query Options. JavaDoc

LexEVSService

The Main LexEVSAPI Interface. This includes support for caCORE-SDK Data Service calls as well as remote LexBIG API calls. JavaDoc

Search Paradigm

The caCORE LexEVS architecture includes a service layer that provides a single, common access paradigm to clients that use any of the provided
interfaces. As an object-oriented middleware layer designed for flexible data access, caCORE LexEVS relies heavily on strongly typed objects and an objec
t-in/object-out mechanism.

Accessing and using a caCORE LexEVS system requires the following steps:

. Ensure that the client application has access to the objects in the domain space.
. Formulate the query criteria using the domain objects.

. Establish a connection to the server.

. Submit the query objects and specify the desired class of objects to be returned.
Use and manipulate the result set as desired.

arwNR

caCORE LexEVS systems use four native application programming interfaces (APIs). Each interface uses the same paradigm to provide access to the
caCORE LexEVS domain model, with minor changes specific to the syntax and structure of the clients. The following sections describe each API, identify
installation and configuration requirements, and provide code examples.

The sequence diagram that follows illustrates the caCORE LexEVS API search mechanism implemented to access the NCI EVS vocabularies.

T ——

L i =y e)) B

e

o L T

nalmwnalay H . i

i m-main wan E

. | Rl

=% Brre o bam o e E
=

Querying the System

LexEVS conforms to the caCORE SDK API - for more information see caCORE SDK 4.1 Programmer's Guide.

QueryOptions

QueryOptions are designed to give the user extra control over the query before it is sent to the system. QueryOptions may be used to modify a query in
these ways:

1. 'CodingScheme' - Restricts the query to the specified Coding Scheme, instead of querying every available Coding Scheme.

http://lexevsapi.nci.nih.gov/lexevsapi50/docs/org/LexGrid/LexBIG/caCore/interfaces/LexEVSDistributed.html
http://lexevsapi.nci.nih.gov/lexevsapi50/docs/org/LexGrid/LexBIG/caCore/interfaces/LexEVSDataService.html
http://lexevsapi.nci.nih.gov/lexevsapi50/docs/org/LexGrid/LexBIG/caCore/interfaces/LexEVSService.html
https://wiki.nci.nih.gov/pages/viewpage.action?pageId=187761540
http://lexevsapi.nci.nih.gov/lexevsapi50/docs/org/LexGrid/LexBIG/caCore/applicationservice/QueryOptions.html

2.

3.

4.

CodingSchemeVersionOrTag' - Restricts the query to the specified Version of the Coding Scheme. Note that:

® This may NOT be specified without also specifying the '‘CodingScheme' attribute.

® [f left unset, it will default to the version of the Coding Scheme tagged as "PRODUCTION" in the system.
'SecurityTokens' - Security Tokens to use with the specified query. These Security Tokens are scoped to the current query ONLY. An subsequent
queries will also need to specify the necessary Query Options.
'LazyLoad' - Some high use-case model Objects have bee 'lazy-load' enabled. This means that some attributes and associations of a model
Object may not be fully populated when returned to the user. This allows for faster query times. This defaults to false, meaning that all attributes
and associations will be eagerly fetched by the server and model Objects will always be fully populated. To enable this on applicable Objects, set
to true.

@ Note

Lazy Loading may only be used in conjunction with specifying a Coding Scheme and Version with the 'CodingScheme' and
'CodingSchemeVersionOrTag' attributes above.

. 'ResultPageSize’ - the page size of results to return. The higher the number, the more results the system will return to the user at once. The client

will request the next group of query results transparenly. This parameter is useful for performance tuning. For example, if a query returns a result
0f10,000 Objects, a 'ResultPageSize' of '1000' would make 10 calls to the server returning a page of 1000 results each time. If left unset, this
value will default to the default set Page Size

Examples of Use

Example 4.1: Query By Example with No Query Options

Java Code Snippet

public static void main(String[] args)

{

try {
LexEVSAppl i cati onServi ce appService =

(LexEVSAppl i cati onServi ce) Appl i cati onServi ceProvi der.
get Appl i cati onServi ce("EvsServicelnfo");
Entity entity = new Entity()
entity.setEntityCode("Cl1234");
List<Entity> list = appService.search(Entity.class, entity);
} catch(ApplicationException ex)\{
}

The following table explains specific statements in the code by line number.

4

Line Explanation

Number
Creates an instance of a class that implements the LexEVSApplicationService interface. This interface defines the service methods used to
access data objects.
Construct the Query By Example Object and populate it with the desired search critieria. For this example, seach for any 'Entity’ with an
‘entityCode" attribute equaling 'C1234'.
Calls the search method of the LexEVSApplicationService object. This method returns a List Collection. This list will contain all of the

'Entity’ Objects that match the search critieria. It this case, it will return all 'Entity’ Objects with an 'entityCode" of "C1234".

Example 4.2: Query By Example with Query Options

Java Code Snippet

public static void nain(String[] args)

{
try {
LexEVSAppl i cati onServi ce appService = (LexEVSAppli cationService)ApplicationServiceProvider.
get Appl i cati onServi ce("EvsServicelnfo");
QueryOptions queryOptions = new QueryOptions();
quer yOpti ons. set Codi ngSchenme("NCl Thesaurus");
Codi ngScheneVer si onOr Tag csvt = new Codi ngScheneVer si onOr Tag() ;
csvt. set Version("09.10d");
qguer yOpt i ons. set Codi ngScheneVer si onOr Tag(csvt) ;
Entity entity = new Entity();
entity.setEntityCode("C1234");
List& t;Entity> list = appService.search(Entity.class, entity, queryOptions);
}
cat ch(Applicati onException ex){
}
}

The following table explains specific statements in the code by line number.

Line Explanation
Number

4 Creates an instance of a class that implements the LexEVSApplicationService interface. This interface defines the service methods used to
access data objects.

7 Construct the QueryOptions Object.

8 Populate the QueryOptions with the desired Coding Scheme.

9 Construct a CodingSchemeVersionOrTag Object.

10 Populate the CodingSchemeVersionOrTag Object with the desired Version.

11 Populate the QueryOptions with the above CodingSchemeVersionOrTag Object.

12 Construct the Query By Example Object and populate it with the desired search critieria. For this example, seach for any 'Entity’ with an

‘entityCode" attribute equaling 'C1234'.

14 Calls the search method of the LexEVSApplicationService object, along with the QueryOptions. This method returns a List Collection. This
list will contain all of the 'Entity' Objects that match the search critieria, while being further modified by the QueryOptions. It this case, it will
return all 'Entity’ Objects with an 'entityCode' of "C1234" belonging to the CodingScheme "NCI Thesaurus" Version "09.10d".

Web Services API

The caCORE LexEVS Web Services API enables access to caCORE LexEVS data and vocabulary data from development environments where the Java
API cannot be used, or where use of XML Web services is more desirable. This includes non-Java platforms and languages such as Perl, C/C++, .NET
framework (C#, VB.Net), and Python.

The Web services interface can be used in any language-specific application that provides a mechanism for consuming XML Web services based on the
Simple Object Access Protocol (SOAP). In those environments, connecting to caCORE LexEVS can be as simple as providing the end-point URL. Some
platforms and languages require additional client-side code to handle the implementation of the SOAP envelope and the resolution of SOAP types.To view
a list of packages that cater to different programming languages, visit http://www.w3.0rg/TR/SOAP/ and http://www.soapware.org/.

To maximize standards-based interoperability, the caCORE Web service conforms to the Web Services Interoperability Organization (WS-I) basic profile.
The WS-I basic profile provides a set of non-proprietary specifications and implementation guidelines that enable interoperability between diverse systems.
For more information about WS-I compliance, visit http://www.ws-i.org.

On the server side, Apache Axis is used to provide SOAP-based, inter-application communication. Axis provides the appropriate serialization and
deserialization methods for the JavaBeans to achieve an application-independent interface. For more information about Axis, visit http://ws.apache.org/axis/

Configuration

The caCORE/LexEVS WSDL file is located at http://lexevsapi.nci.nih.gov/lexevsapi50/services/lexevsapi50Service?wsdl. In addition to describing the
protocols, ports, and operations exposed by the caCORE LexEVS Web service, this file can be used by a number of IDEs and tools to generate stubs for
caCORE LexEVS objects. This enables code on different platforms to instantiate native objects for use as parameters and return values for the Web
service methods. For more information on how to use the WSDL file to generate class stubs, consult the specific documentation for your platform.

The caCORE LexEVS Web services interface has a single end point called <tt>lexevsapi50Service</tt>, which is located at http://lexevsapi.nci.nih.gov
llexevsapi50/services/lexevsapi50Service. Client applications should use this URL to invoke Web service methods.

http://www.w3.org/TR/SOAP/
http://www.soapware.org/
http://www.ws-i.org
http://ws.apache.org/axis/
http://lexevsapi.nci.nih.gov/lexevsapi50/services/lexevsapi50Service?wsdl
http://lexevsapi.nci.nih.gov/lexevsapi50/services/lexevsapi50Service
http://lexevsapi.nci.nih.gov/lexevsapi50/services/lexevsapi50Service

Building a Java SOAP Client
LexEVSAPI provides a tool to create a Java SOAP client capable of connecting to a LexEVSAPI SOAP service.

In the ./webServiceSoapClient contains a build.xml file that will construct a LexEVSAPI SOAP client. Before building, you may edit this build.xml file to
customize the build process. Editable properties include ‘wsdlURL' and ‘webServiceNamespace'. An example configuration is below:

<property name="wsdl URL" val ue="http://bm dev4: 8180/ | exevsapi 50/ servi ces/ | exevsapi 50Ser vi ce?wsdl "/ >
<property name="webServi ceNanespace" val ue="http://bm dev4: 8180/ | exevsapi 50/ servi ces/ | exevsapi 50Ser vi ce"/ >

To build the client, use the command 'ant all' from the ./webServiceSoapClient directory.

XML-HTTP API

The caCORE LexEVS XML-HTTP API, based on the REST (Representational State Transfer) architectural style, provides a simple interface using the
HTTP protocol. In addition to its ability to be invoked from most Internet browsers, developers can use this interface to build applications that do not require
any programming overhead other than an HTTP client. This is particularly useful for developing Web applications using AJAX (Asynchronous JavaScript
and XML).

Service Location and Syntax

The CORE EVS XML-HTTP interface uses the following URL syntax:

http://{server}/{servlet}?query={returnC ass}&criteria}
&start | ndex={i ndex}
&codi ngSchenmeNane={ codi ngSchenmeNane}
&codi ngScheneVer si on={ codi ngScheneVer si on}

The following table explains the URL syntax used by the caCORE LexEVS XML-HTTP interface, indicates whether specific elements are required, and
gives examples.

Element Meaning Required Example
server Name of the Web server on which the caCORE LexEVS 5.0 Web application is Yes X X i
deployed. | exevsapi . nci . ni h. gov

/| exevsapi 50

servlet URI and name of the servlet that will accept the HTTP GET requests. Yes i

| exevsapi 50/ Get XML

| exevsapi 50/ Get HTML
returnClass Class name indicating the type of objects that this query should return. Yes X

quer y=DesclLogi cConcept
criteria Search request criteria describing the requested objects. Yes i

DescLogi cConcept [@ d=2]
index Starting index of the result set. No

start | ndex=25
codingSchemeName = Restrict the query to a specific Coding Scheme Name. No

codi ngSchenmeNanme=NCl _Thesaur us

codingSchemeVersi | Restrict the query to a specific Coding Scheme Version. No i i
on codi ngScheneVer si on=09. 12d

@ Note

Must be used in conjunction with a ‘codingSchemeName*

The caCORE LexEVS architecture currently provides two servlets that accept incoming requests:
® GetXML - returns results in an XML format that can be parsed and consumed by most programming languages and many document authoring
and management tools.
® GetHTML - presents result using a simple HTML interface that can be viewed by most modern Internet browsers.

Within the request string of the URL, the criteria element specifies the search criteria using XQuery-like syntax. Within this syntax, square brackets ([and])

represent attributes and associated roles of a class, the at symbol (@) signals an attribute name/value pair, and a forward slash character @ specifies
nested criteria.

Criteria statements in XML-HTTP queries generally use the following syntax (although you can also build more complex statements):

{d assNanme}[@attributeNane}={value}] [@attributeNane}={val ue}]...
Cl assNane}[@at tri but eNane} ={val ue}]/
{d assNane}[@attributeNane}={value}]/...

The following table explains the syntax for criteria statements and gives examples.

Parameter Meaning Example
Cl assNane The name of a class. Entity

attributeName @ The name of an attribute of the return class or an associated class = enti t yCode

val ue The value of an attribute. C123*

Examples of Use

The example in the table below demonstrates the usage of the XML-HTTP interface. In actual usage, these queries would either be submitted by a block
of code or entered in the address bar of a Web browser.

@ Note

The servlet name GetXML in each of the examples can be replaced with GetHTML to view with layout and markup in a browser.

Query http://evsapi.nci.nih. gov/ evsapi 41/ Get XM.?quer y=DescLogi cConcept [_ent it yCode=C123*]

Semantic Meaning | Find all objects of type Entity that contain an 'entityCode’ matching the pattern 'C123*.

Working with Result Sets

Because HTTP is a stateless protocol, the caCORE LexEVS server cannot detect the context of any incoming request. Consequently, each invocation of
GetXML or GetHTML must contain all of the information necessary to retrieve the request, regardless of previous requests. Developers should consider
this when working with the XML-HTTP interface.

Controlling the Start Index

To specify a specific start position in the result set, specify the st ar t | ndex parameter. This will scroll to the desired position within the set of results.

Internal-Use Parameters

A number of parameters, such as r esul t Count er, pageSi ze, and page, are used internally by the system and are not designed to be set by the user.

@ Note

When specifying attribute values in the query string, note that use of the following characters generates an error:
[1/\#&%

Distributed LexEVS API

Overview

In place of the existing EVS 3.2 object model, caCORE LexEVS is making a gradual transition toward a pure LexEVS back-end terminology server and
exposure of the LexEVS Service object model. caCORE 3.2 and earlier required a custom API layer between external users of the system and the
proprietary Apelon Terminology Server APIs. With the transition to LexEVS, caCORE LexEVS can publicly expose the open source terminology service
API without requiring a custom API layer.

Architecture

The LexEVS API is exposed by the LexEVS caCORE System for remote, distributed access. The caCORE System's LexEVSApplicationService class
implements the LexBIGService interface, effectively exposing LexEVS via caCORE.

Since in many cases the objects returned from the <tt>LexBIGService</tt> are not merely beans, but full-fledged data access objects (DAOSs), the
caCORE LexEVS client is configured to proxy method calls into the LexEVS objects and forward them to the caCORE server so that they execute within
the LexEVS environment. The following diagram shows the DLB environment for the caCORE LexEVS Server.

caCORE caCORE
Chert ApplicationService f———Spring Ramoling———— iz
LexBIG
Chent

LexBIG Datastore

The DLB environment will be configured on the caCORE LexEVS Server (http://lexevsapi.nci.nic.gov/lexevsapi50). This will give the server access to the
LexEVS database and other resources. The client must therefore go through the caCORE LexEVS server to access any LexEVS data.

LexEVS Annotations

To address LexEVS DAOs, the LexEVS API integration incorporated the addition of (1) Java annotation marking methods that can be safely executed on
the client side; and (2) classes that can be passed to the client without being wrapped by a proxy. The annotation is named @ gCl i ent Si deSaf e. Every
method in the LexEVS API that is accessible to the caCORE LexEVS user had to be considered and annotated if necessary.

Aspect Oriented Programming Proxies

LexEVS integration with caCORE LexEVS was accomplished using Spring Aspect Oriented Programming (AOP) to proxy the LexEVS classes and
intercept calls to their methods. The caCORE LexEVS client wraps every object returned by the <tt>LexBIGService</tt> inside an AOP Proxy with advice
from a LexBIGMethodInterceptor (“the interceptor").

The interceptor is responsible for intercepting all client calls on the methods in each object. If a method is marked with the @ gC i ent Si deSaf e
annotation, it proceeds normally. Otherwise, the object, method name, and parameters are sent to the caCORE LexEVS server for remote execution.

http://lexevsapi.nci.nic.gov/lexevsapi50

Clend AppicationSarvice caCORE SE'I"-'EI‘I LexBiGEarvice 0B

ElCoredNodesat o
Cadedbod e B I
i P E——. g | |j
Sal

JESSSESSESESSESEasaS. (SEzapiSssdsagsess |
| Codeadrlad=Set | | | |
Ll . | | | |
| | | |
| | | |
= Thiz method has no | | |
remuole arnctatian, | | |
20 [iz nal intercegled. | | |
T ! I | | |
4L ok | % | |

" e This rthod is manoed by
tecirctiitniieg 1 an arnotatian, 5o/t i | | |

inbarcaptad and sant Lo
- - the ServEr . [| |
1 H : | | |
resoiveTolisl e . L | | |
axpriLEREmatary I | | |
: exepiefe

i i resahaTalist .-“——?m—h-m
ot o et s s ¥ 3 |
] N r— 1o, AN — | |
|
|

Figure 4.6 - Sequence diagram showing method interception

LexEVS APl Documentation

The Mayo Clinic wrote the LexEVS 5.0 API. Documentation describing the LeXEVS Service Model is available on the LexGRID Vocabulary Services for
caBIG GForge archive.

LexEVS Installation and Configuration
The DLB API is strictly a Java interface and requires Internet access for remote connectivity to the caCORE LexEVS server. Access to the DLB API

requires access to the lexevsapi-client.jar file, available for download on the NCICB Web site. The lexevsapi-client.jar file needs to be available in the
classpath. For more information, see Installing and Configuring the LexEVS 5.0 Java API.

Example of Use
Example 4.6: Using the DLB API

The following code sample shows use of the DLB API to retrieve the list of available coding schemes in the LexEVS repository.

https://wiki.nci.nih.gov/x/eYBoCw

inport org.LexGid.LexBl G LexBl GServi ce. LexBI GSer vi ce;

inport org.LexGid.LexBIG Uility.Constructors;

import org.LexGid.LexBlIG caCore.interfaces. LexEVSAppli cationService;
inport org.LexGid.codi ngSchenes. Codi ngSchene;

i mport gov.nih.nci.systemclient.ApplicationServiceProvider;
public class Test {
LexBl GServi ce | bSvc;

public void run(String codi ngSchenme, String version) {
/Il Set the LexEVS URL (for renote access)
String evsUrl = "https://|exevsapi 65.nci.nih.gov/| exevsapi 65";

Il Get the LexBIG service reference from LexEVS Application Service
try {
I bSvc = (LexEVSApplicationService) ApplicationServiceProvider.getApplicationServiceFronmJrl (evsUl,
"EvsServicel nfo");
} catch (Exception el) {
el. printStackTrace();

}
/1 Resol ve Schene
try {

Codi ngSchenme schene = | bSvc. resol veCodi ngSchene(codi ngSchene,
Constructors. creat eCodi ngScheneVer si onOr TagFr onVer si on(version));

if(schene !'= null) {

Systemout. println("Found schene: " + schene. get Codi ngSchenmeNane());
}else {

System out. println("Scheme not found: " + codi ngSchene);
}

} catch (Exception e) {
e.printStackTrace();
}

}

/**

* Main

*/

public static void nain(String[] args) {
String name = "NCI Thesaurus";
String version = "18.03d";

new Test ().run(name, version);

LexEVS Analytical Grid Service API

The following tables summarize the operations available through the LexEVS Analytical Grid Service. Each of the operations is also defined in detail
below. The grid analytical service and related operations are viewable via the caGrid Portal.

Using the API

There are two (2) different interfaces for accessing the LexEVS Grid Services:

® org.LexGrid.LexBIG.cagrid.adapters.LexBIGServiceAdapter, or
® org.LexGrid.LexBIG.cagrid.adapters.LexBIGServiceGridAdapter

Option 1, org.LexGrid.LexBIG.cagrid.adapters.LexBIGServiceAdapter provides an interface for interacting with the LexEVS Grid Services. This
Interface is intended to mirror the existing LexEVS API as much as possible. There is no object wrapping for semantic purposes on this interface. This
allows existing applications of the LexEVS API to use Grid Services without code changes.

This Interface may be acquired by instantiating LexBIGServiceAdapter with the Grid Service URL as a parameter.

http://cagrid-portal.nci.nih.gov

Java Code Snippet

LexBl GService | bs = new LexBl GServi ceAdapter("http://|exevsapi-anal ytical 50. nci . ni h. gov/wsrf/services/cagrid
/ LexEVSGri dService");

Option 2, org.LexGrid.LexBIG.cagrid.adapters.LexBIGServiceGridAdapter also provides an interface for interacting with the LexEVS Grid Services.
However, this Interfaces is the semantically defined interface. All method parameters and return values are defined and annotated as CDEs to be loaded
into caDSR. This Interface is intended to be caGrid Silver Level Compliant.

This Interface may be acquired by instantiating LexBIGServiceGridAdapter with the Grid Service URL as a parameter.

Java Code Snippet

LexBl GServiceGid | bs = new LexBl GServi ceGri dAdapter ("http://1exevsapi-anal yti cal 50.nci. ni h. gov/wsrf/services
/ cagri d/ LexEVSG i dServi ce");

Method Descriptions

getCodingSchemeConcepts
getCodingSchemeConcepts(CodingSchemeldentification, CodingSchemeVersionOrTag)

Description: Returns the set of all (or all active) concepts in the specified coding scheme.

Input: org.LexGrid.LexBIG.DataModel.cagrid.CodingSchemeldentification
org.LexGrid.LexBIG.DataModel.Core.CodingSchemeVersionOrTag

Output: org.LexGrid.LexBIG.cagrid.LexBIGCaGridServices.CodedNodeSet.stubs.types.CodedNodeSetReference

Exception: RemoteException

Implementation Implementation:

Details:
® Create a Resource on the server and populate it with the requested org.LexGrid.LexBIG.LexBIGService.CodedNodeSet.
® Return the Client Reference to the user. This Reference has the above org.LexGrid.LexBIG.LexBIGService.CodedNodeSet
as a Resource. An org.LexGrid.LexBIG.cagrid.LexBIGCaGridServices.service.CodedNodeSetClient object is built from the
above Reference.
Sample Call:
1. Connect to the LexEVS caGrid Service using the org.LexGrid.LexBIG.cagrid.adapters.LexBIGServiceAdapter or org.LexGrid.
LexBIG.cagrid.adapters.LexBIGServiceGridAdapter
LexBI GServiceGid | bs = new LexBl GServi ceG i dAdapter(url);
2. Build a org.LexGrid.LexBIG.DataModel.Core.CodingSchemeVersionOrTag containing the Version information for the desired
Coding Scheme
Codi ngScheneVer si onOr Tag csvt = new Codi ngScheneVer si onOr Tag() ;
csvt. set Version("testVersion");
3. Build an org.LexGrid.LexBIG.DataModel.cagrid.CodingSchemeldentification to hold the Coding Scheme name.
Codi ngSchenel denti ficati on codi ngScheme = new Codi ngSchenel dentification();
codi ngSchene. set Code(code) ;
4. Invoke the LexBIG caGrid service as follows:
CodedNodeSet Gid cns = | bs. get Codi ngScheneConcept s(codi ngSchene, csvt);
getFilter

getFilter(Extensionldentification)

Description: Returns an instance of the filter extension registered with the given name.
Input: org.LexGrid.LexBIG.DataModel.cagrid.Extensionldentification
Output: org.LexGrid.LexBIG.cagrid.LexBIGCaGridServices.Filter.stubs.types.FilterReference

Exception: RemoteException

Implementation Implementation:

Details:
® Create a Resource on the server and populate it with the requested org.LexGrid.LexBIG.Extensions.Query.Filter

® Return the Client Reference to the user. This Reference has the above org.LexGrid.LexBIG.Extensions.Query.Filter as a
Resource. This client is a Service Context that allows the user to call regular org.LexGrid.LexBIG.Extensions.Query.Filter API
calls through the grid service. An org.LexGrid.LexBIG.cagrid.LexBIGCaGridServices.Filter.client.FilterClient object is built
from the above Reference. This FilterClient implements the Interface org.LexGrid.LexBIG.Extensions.Query.Filter. This
makes calling Grid Service Calls through org.LexGrid.LexBIG.cagrid.LexBIGCaGridServices.Filter.client.FilterClient
transparent to the end user.

Sample Call:

1. Connect to the LexEVS caGrid Service using the org.LexGrid.LexBIG.cagrid.adapters.LexBIGServiceAdapter or org.LexGrid.
LexBIG.cagrid.adapters.LexBIGServiceGridAdapter

LexBl GServiceGid | bs = new LexBI GServi ceG i dAdapter (url);

2. Build an org.LexGrid.LexBIG.DataModel.cagrid.Extensionldentification to hold the Extension name.

Ext ensi onl dentification extension = new Extensionldentification();
ext ensi on. set LexBl GExt ensi onNane(nane) ;

3. Invoke the LexEVS caGrid service as follows:

Filter filter = | bs.getFilter(extension);

getSortAlgorithm

getSortAlgorithm(Extensionldentification)

Description: Returns an instance of the sort extension registered with the given name.
Input: org.LexGrid.LexBIG.DataModel.cagrid.Extensionldentification
Output: org.LexGrid.LexBIG.cagrid.LexBIGCaGridServices.Sort.stubs.types.SortReference

Exception: RemoteException

Implementation Implementation:

Details:
® Create a Resource on the server and populate it with the requested org.LexGrid.LexBIG.Extensions.Query.Sort

® Return the Client Reference to the user. This Reference has the above org.LexGrid.LexBIG.cagrid.LexBIGCaGridServices.
Sort.client.SortClient as a Resource. This client is a Service Context that allows the user to call regular org.LexGrid.LexBIG.
Extensions.Query.Sort API calls through the grid service. An org.LexGrid.LexBIG.cagrid.LexBIGCaGridServices.Sort.client.
SortClient object is built from the above Reference. This SortClient implements the Interface org.LexGrid.LexBIG.Extensions.
Query.Sort. This makes calling Grid Service Calls through org.LexGrid.LexBIG.cagrid.LexBIGCaGridServices.Sort.client.
SortClient transparent to the end user.

Sample Call:

1. Connect to the LexEVS caGrid Service using the org.LexGrid.LexBIG.cagrid.adapters.LexBIGServiceAdapter or org.LexGrid.
LexBIG.cagrid.adapters.LexBIGServiceGridAdapter

LexBl GServiceGid | bs = new LexBI GServi ceG i dAdapter (url);
2. Build an org.LexGrid.LexBIG.DataModel.cagrid.Extensionldentification to hold the Extension name.
Ext ensi onl dentification extension = new Extensionldentification();

ext ensi on. set LexBl GExt ensi onNane(nane) ;

3. Invoke the LexEVS caGrid service as follows:

Filter filter = | bs.getSortAl gorithn{extension);
getFilterExtensions
getFilterExtensions()
Description: Returns a description of all registered extensions used to provide additional filtering of query results.
Input: none
Output org.LexGrid.LexBIG.DataModel.Collections.ExtensionDescriptionList
Exception: RemoteException
Implementation | Implementation:
Details: Call this method on the associated LeXEVS Service instance (or Distributed LexEVS instance) on the server, and forward the
results.
Sample Call:

1. Connect to the LexEVS caGrid Service using the org.LexGrid.LexBIG.cagrid.adapters.LexBIGServiceAdapter or org.LexGrid.
LexBIG.cagrid.adapters.LexBIGServiceGridAdapter

LexBl GServiceGid | bs = new LexBl GServi ceG i dAdapter (url);

2. Invoke the LexEVS caGrid service as follows:

Ext ensi onDescri pti onLi st extDescList = | bs.getFilterExtensions();
getServiceMetadata
getServiceMetadata()
Description: Return an interface to perform system-wide query over metadata for loaded code systems and providers.

Input: none

Output: org.LexGrid.LexBIG.cagrid.LexBIGCaGridServices.LexBIGServiceMetadata.stubs.types.LexBIGServiceMetadataReference

Exception: RemoteException

Implementation Implementation:

Details:
® Create a Resource on the server and populate it with the requested org.LexGrid.LexBIG.LexBIGService.

LexBIGServiceMetadata

® Return the LexBIGServiceMetadataClient to the user. This LexBIGServiceMetadataClient has the above org.LexGrid.LexBIG.
LexBIGService.LexBIGServiceMetadata as a Resource. An org.LexGrid.LexBIG.cagrid.LexBIGCaGridServices.service.
LexBIGServiceMetadataClient object is built from the above Reference.
Sample Call:

1. Connect to the LexEVS caGrid Service using the org.LexGrid.LexBIG.cagrid.adapters.LexBIGServiceAdapter or org.LexGrid.
LexBIG.cagrid.adapters.LexBIGServiceGridAdapter

LexBl GServiceGid | bs = new LexBl GServi ceG i dAdapter (url);

2. Invoke the LexEVS caGrid service as follows:

LexBl GServi ceMet adat aG i d netadata = | bs. get Servi ceMet adat a() ;

getSupportedCodingSchemes

getSupportedCodingSchemes()

Description: Return a list of coding schemes and versions that are supported by this service, along with their status.

Input: none

Output: org.LexGrid.LexBIG.DataModel.Collections.CodingSchemeRenderingList

Exception: RemoteException

Implementation | Implementation:

Details: Call this method on the associated LexEVS Service instance (or Distributed LexEVS instance) on the server, and forward the
results.
Sample Call:

1. Connect to the LexEVS caGrid Service using the org.LexGrid.LexBIG.cagrid.adapters.LexBIGServiceAdapter or org.LexGrid.
LexBIG.cagrid.adapters.LexBIGServiceGridAdapter

LexBl GServiceGid | bs = new LexBI GServi ceG i dAdapter (url);

2. Invoke the LexEVS caGrid service as follows:

Codi ngScheneRenderi ngLi st csrl = | bs. get Support edCodi ngSchenes();
getLastUpdateTime
getLastUpdateTime()
Description: Return the last time that the content of this service was changed; null if no changes have occurred. Tag assignments do not count

as service changes for this purpose.
Input: none

Output: java.util.Date

Exception: RemoteException

Implementation Implementation:
Details: Call this method on the associated LeXEVS Service instance (or Distributed LexEVS instance) on the server, and forward the

results.
Sample Call:

1. Connect to the LexEVS caGrid Service using the org.LexGrid.LexBIG.cagrid.adapters.LexBIGServiceAdapter or org.LexGrid.
LexBIG.cagrid.adapters.LexBIGServiceGridAdapter

LexBl GServiceGid | bs = new LexBI GServi ceG i dAdapter (url);

2. Invoke the LexEVS caGrid service as follows:

Date date = | bs. getLast Updat eTi ne();

resolveCodingScheme

resolveCodingScheme(CodingSchemeldentification, CodingSchemeVersionOrTag)

Description: Return detailed coding scheme information given a specific tag or version identifier.

Input: org.LexGrid.LexBIG.DataModel.cagrid. CodingSchemeldentification, org.LexGrid.LexBIG.DataModel.Core.
CodingSchemeVersionOrTag

Output: org.LexGrid.codingSchemes.CodingScheme

Exception: RemoteException

Implementation = Implementation:

Details: Call this method on the associated LexEVS Service instance (or Distributed LexEVS instance) on the server, and forward the
results.
Sample Call:

1. Connect to the LexEVS caGrid Service using the org.LexGrid.LexBIG.cagrid.adapters.LexBIGServiceAdapter or org.LexGrid.
LexBIG.cagrid.adapters.LexBIGServiceGridAdapter

LexBl GServiceGid | bs = new LexBl GServi ceGi dAdapter (url);

2. Build an org.LexGrid.LexBIG.DataModel.cagrid.CodingSchemeldentification to hold the Coding Scheme name.

Codi ngSchenel denti ficati on codi ngScheme = new Codi ngSchenel dentification();
codi ngSchene. set Code(code) ;

3. Build a org.LexGrid.LexBIG.DataModel.Core.CodingSchemeVersionOrTag containing the Version information for the desired
Coding Scheme

Codi ngScheneVer si onOr Tag csvt = new Codi ngSchemeVer si onOr Tag() ;
csvt. set Version("testVersion");

4. Invoke the LexEVS caGrid service as follows:

CodedNodeSet Grid cns = | bs.resol veCodi ngSchene(codi ngSchene, csvt);

getNodeGraph

getNodeGraph(CodingSchemeldentification, CodingSchemeVersionOrTag, RelationContainerldentification)

Description: Returns the node graph as represented in the particular relationship set in the coding scheme.

Input:

Output:

Exception:

Implementation
Details:

org.LexGrid.LexBIG.DataModel.cagrid.CodingSchemeldentification
org.LexGrid.LexBIG.DataModel.Core.CodingSchemeVersionOrTag
org.LexGrid.LexBIG.DataModel.cagrid.RelationContainerldentification

org.LexGrid.LexBIG.cagrid.LexBIGCaGridServices.
CodedNodeGraph.stubs.types.CodedNodeGraphReference

RemoteException

Implementation:

getMatchAlgorithms

getMatchAlgorithms()

Description:
Input:
Output:

Exception:

Create a Resource on the server and populate it with the requested org.LexGrid.LexBIG.LexBIGService.CodedNodeGraph.
Return the Client Reference to the user. This Reference has the above org.LexGrid.LexBIG.LexBIGService.
CodedNodeGraph as a Resource. An org.LexGrid.LexBIG.cagrid.LexBIGCaGridServices.service.CodedNodeGraphClient
object is built from the above Reference.

Sample Call:

. Connect to the LexBIG caGrid Service using the org.LexGrid.LexBIG.cagrid.adapters.LexBIGServiceAdapter or org.LexGrid.

LexBIG.cagrid.adapters.LexBIGServiceGridAdapter

LexBI GServiceGid | bs = new LexBl GServi ceG i dAdapter(url);

. Build an org.LexGrid.LexBIG.DataModel.cagrid.CodingSchemeldentification to hold the Coding Scheme name.

Codi ngSchenel denti fi cati on codi ngScheme = new Codi ngSchenel dentification();
codi ngSchene. set Code(code) ;

. Build an org.LexGrid.LexBIG.DataModel.Core.CodingSchemeVersionOrTag containing the Version information for the

desired Coding Scheme

Codi ngScheneVer si onOr Tag csvt = new Codi ngScheneVer si onOr Tag() ;
csvt.set Version("testVersion");

. Build an org.LexGrid.LexBIG.DataModel.cagrid.RelationContainerldentification containing the Relation Container information.

Rel ati onCont ai nerldentification contai ner = new Rel ati onCont ai nerldentification();
cont ai ner. set Dc(nane) ;

. Invoke the LexEVS caGrid service as follows, providing String parameters for the desired Coding Scheme and Relationship

Name:

CodedNodeGraphGrid cng = client.get NodeG aph(codi ngSchene, csvt, container);

Returns the node graph as represented in the particular relationship set in the coding scheme.

none

org.LexGrid.LexBIG.DataModel.Collections.ModuleDescriptionList

RemoteException

Implementation Implementation:
Details: Call this method on the associated LeXEVS Service instance (or Distributed LexEVS instance) on the server, and forward the

results.
Sample Call:

1. Connect to the LexEVS caGrid Service using the org.LexGrid.LexBIG.cagrid.adapters.LexBIGServiceAdapter or org.LexGrid.
LexBIG.cagrid.adapters.LexBIGServiceGridAdapter

LexBl GServiceGid | bs = new LexBI GServi ceG i dAdapter (url);

2. Invoke the LexEVS caGrid service as follows:

Modul eDescri ptionLi st nmdl = |bs. get Mat chAl gorithns();

getGenericExtensions

getGenericExtensions()

Description: Returns a description of all registered extensions used to implement application-specific behavior that is centrally accessible from
a LexBIGService.

(D Note

Only generic extensions (base class GenericExtension) will be listed here. All other classes are retrievable at the
appropriate interface point (filter, sort, etc).

Input: none

Output: org.LexGrid.LexBIG.DataModel.Collections.ExtensionDescriptionList

Exception: RemoteException

Implementation | Implementation:

Details: Call this method on the associated LexEVS Service instance (or Distributed LexEVS instance) on the server, and forward the
results.
Sample Call:

1. Connect to the LexEVS caGrid Service using the org.LexGrid.LexBIG.cagrid.adapters.LexBIGServiceAdapter or org.LexGrid.
LexBIG.cagrid.adapters.LexBIGServiceGridAdapter

LexBl GServiceGid | bs = new LexBI GServi ceG i dAdapter (url);

2. Invoke the LexEVS caGrid service as follows:

Ext ensi onDescri ptionLi st edl = |bs. getGeneri cExtensions();

getGenericExtension

getGenericExtensions(Extensionldentification)

Description: Returns an instance of the application-specific extension registered with the given name.
Input: org.LexGrid.LexBIG.DataModel.cagrid.Extensionldentification
Output: org.LexGrid.LexBIG.DataModel.Collections.SortDescriptionList

Exception: RemoteException

Implementation Implementation:
Details: Call this method on the associated LeXEVS Service instance (or Distributed LexEVS instance) on the server, and forward the

results.
Sample Call:

1. Connect to the LexEVS caGrid Service using the or g. LexGri d. LexBl G cagri d. adapt er s. LexBl GSer vi ceAdapt er
ororg. LexGid. LexBl G cagri d. adapt ers. LexBl GSer vi ceG i dAdapt er

LexBI GServiceGid | bs = new LexBl GServi ceG i dAdapter(url);

@ Note

Currently this method will return a LexBIGServiceConvenienceMethods instance.

2. Build an org.LexGrid.LexBIG.DataModel.cagrid.Extensionldentification to hold the Extension name.

Ext ensi onl dentification extension = new Extensionldentification();
ext ensi on. set LexBl GExt ensi onNane(" LexBI GSer vi ceConveni enceMet hods") ;

3. Invoke the LexEVS caGrid service as follows:

LexBI GSer vi ceConveni enceMet hodsGrid | bscm = | bs. get Generi cExt ensi ons(ext ensi on);

4. Return the LexBl GSer vi ceConveni enceMet hodsd i ent to the user. This LexBl GSer vi ceConveni enceMet hodsd i
ent has the above or g. LexGri d. LexBl G Ext ensi ons. Generi c. LexBl GSer vi ceConveni enceMet hods as a
Resource. An org. LexGi d. LexBl G cagri d. LexBl GCaGri dSer vi ces. servi ce. CodedNodeGr aphd i ent object is
built from the above Reference.

getHistoryService

getHistoryService(CodingSchemeldentification)

Description: Resolve a reference to the history api servicing the given coding scheme.
Input: org.LexGrid.LexBIG.DataModel.cagrid.CodingSchemeldentification
Output: org.LexGrid.LexBIG.cagrid.LexBIGCaGridServices.HistoryService.stubs.types.HistoryServiceReference

Exception: RemoteException

Implementation
Details:

Implementation:

® Call this method on the associated LexXEVS Service instance (or Distributed LexEVS instance) on the server, and forward the
results.

® Return the Hi st oryServi ced i ent to the user. This Hi st oryServi ced i ent has the above org. LexGri d. LexBl G
Hi story. Hi st oryServi ce as a Resource. This Client is a Service Context that allows the user to call regular or g.
LexGi d. LexBI G Hi story. Hi storyServi ce API calls through the grid service. H st orySer vi ced i ent implements
the Interface or g. LexGri d. LexBl G Hi st ory. Hi st orySer vi ce. This makes calling Grid Service Calls through or g.
LexGri d. LexBl G cagri d. LexBl GCaGri dServi ces. Hi storyService.client. H storyServiceC ient
transparent to the end user.

Sample Call:

1. Connect to the LexEVS caGrid Service using the or g. LexGri d. LexBI G cagri d. adapt er s. LexBI GSer vi ceAdapt er
ororg.LexGrid. LexBl G cagri d. adapt ers. LexBl GServi ceG i dAdapt er

LexBl GServiceGid | bs = new LexBI GServi ceG i dAdapter (url);

2. Build an org.LexGrid.LexBIG.DataModel.cagrid.CodingSchemeldentification to hold the Coding Scheme name.

Codi ngSchenel denti fi cati on codi ngSchenme = new Codi ngSchenel denti fication();
codi ngSchene. set Code(code) ;

3. Invoke the LexEVS caGrid service as follows:

Hi storyServiceGid history = | bs. getHistoryService(codi ngSchene);

getSortAlgorithms

getSortAlgorithms(SortContext)

Description:
Input:
Output:
Exception:

Implementation
Details:

Returns a description of all registered extensions used to provide additional filtering of query results.
org.LexGrid.LexBIG.DataModel.InterfaceElements.types.SortContext
org.LexGrid.LexBIG.DataModel.Collections.SortDescriptionList

RemoteException

Implementation:

Call this method on the associated LexEVS Service instance (or Distributed LexEVS instance) on the server, and forward the
results.

Sample Call:

1. Connect to the LexEVS caGrid Service using the org. LexGri d. LexBI G cagri d. adapt er s. LexBl GSer vi ceAdapt er
ororg. LexGrid. LexBlI G cagrid. adapt ers. LexBI GSer vi ceG i dAdapt er

LexBl GServiceGid | bs = new LexBI GServi ceG i dAdapter (url);

2. Invoke the LexEVS caGrid service as follows:

Sort Descri ptionList sortDescList = |bs.getSortAl gorithns(sortContext);

resolveCodingSchemeCopyright

resolveCodingSchemeCopyright

Description:

Input:

Return coding scheme copyright given a specific tag or version identifier.

org.LexGrid.LexBIG.DataModel.cagrid.CodingSchemeldentification

Output: org.LexGrid.LexBIG.DataModel.cagrid.CodingSchemeCopyRight

Exception: RemoteException

Implementation | Implementation:

Details: Call this method on the associated LexEVS Service instance (or Distributed LexEVS instance) on the server, and forward the
results.
Sample Call:

1. Connect to the LexEVS caGrid Service using the or g. LexGri d. LexBl G cagri d. adapt er s. LexBl GSer vi ceAdapt er
ororg. LexGrid. LexBl G cagri d. adapt ers. LexBl GServi ceG i dAdapt er

LexBI GServiceGid | bs = new LexBl GServi ceG i dAdapter(url);

2. Buildanorg. LexGri d. LexBl G Dat aMbdel . cagri d. Codi ngSchenel denti fi cati onto hold the Coding Scheme
name.

Codi ngSchenel denti fi cati on codi ngSchene = new
Codi ngSchenel denti fication();
codi ngSchene. set Code(code) ;

3. Buildan org. LexGri d. LexBl G Dat aMbdel . Cor e. Codi ngScheneVer si onOr Tagcontaining the Version information for
the desired Coding Scheme

Codi ngScheneVer si onOr Tag csvt = new Codi ngSchemeVer si onOr Tag() ;
csvt.set Version("testVersion");

4. Invoke the LexEVS caGrid service as follows:

Codi ngScheneCopyRi ght copyri ght = | bs. resol veCodi ngScheneCopyri ght (codi ngSchenme, csvt);

setSecurityToken

setSecurityToken(CodingSchemeldentification, SecurityToken)

Description: Sets the Security Token for the given Coding Scheme.
Input: org.LexGrid.LexBIG.DataModel.cagrid.CodingSchemeldentification, gov.nih.nci.evs.security.SecurityToken
Output: org.LexGrid.LexBIG.cagrid.LexEVSGridService.stubs.types.LexEVSGridServiceReference.LexEVSGridServiceReference

Exception: RemoteException

Implementation Implementation:
Details: Call this method on the associated LeXEVS Service instance (or Distributed LexEVS instance) on the server, and forward the

results.
Sample Call:

1. Connect to the LexEVS caGrid Service using the or g. LexGri d. LexBl G cagri d. adapt er s. LexBl GSer vi ceAdapt er
ororg. LexGid. LexBl G cagri d. adapt ers. LexBl GSer vi ceG i dAdapt er

LexBI GServiceGid | bs = new LexBl GServi ceG i dAdapter(url);

2. Build an org.LexGrid.LexBIG.DataModel.cagrid.CodingSchemeldentification to hold the Coding Scheme name.

Codi ngSchenel denti fi cati on codi ngSchene = new
Codi ngSchenel denti fi cation(); codi ngSchene. set Name("codi ngScheme");

3. Buildagov. ni h.nci. evs. security. SecurityTokencontaining the security information for the desired Coding Scheme.

SecurityToken nmetaToken = new SecurityToken();
nmet aToken. set AccessToken("token");

4. Invoke the LexEVS caGrid service as follows: This will return a reference to a new "LexBIGServiceGrid" instance that is
associated with the security properties that were passed in.

LexBl GServiceGid | bsg = | bs. set SecurityToken(codi ngSchene, netaToken);

Usage Instructions

Service URL

The LexEVS Grid Service 4.2 URL is:

Li nk provided for historical purposes http://|exevsapi.nci.nih.gov/wsrf/services/cagrid/ LexEVSGi dService]

The service is also accessible via the caGRID Portal.

Required Libraries
The libraries required for programmatic access to the LexEVS Grid Service are listed in the tables below.

The following table lists the 3rd Party Libraries required for use of the LexEVS API Grid Service.

Product Jars License Home Page
Apache WS-Addressing addressing-1.0.jar adressing 1.0.LICENSE From Globus 4.0.2 Java Web Services Core
lib directory:

http://www.globus.org/toolkit/downloads/4.0.2

Source available at

http://ws.apache.org/addressing

http://cagrid-portal.nci.nih.gov/web/guest/home;jsessionid=AEEE79C27E8EDB4EC0117C2CE8857D49
http://www.ogsa-dai.ac.uk/documentation/ogsadai-wsi-2.2-thirdparty/addressing-1.0.LICENSE
http://www.globus.org/toolkit/downloads/4.0.2
http://ws.apache.org/addressing

Apache Axis

Apache Xerces

Apache Lucene

ASM

axis-ant.jar axis-jars.LICENSE
axis.jar
commons-pool-1.3.jar
commons-logging-1.1.
jar
commons-lang-2.2.jar
commons-collections-
3.2.jar
commons-codec-1.3.
jar

log4j-1.2.8.jar
jaxrpc.jar

saaj.jar

wsdl4j.jar
xerceslmpl.jar xerces.LICENSE
lucene-core-2.3.2.jar Lucene LICENSE
lucene-regex-2.3.2.jar
lucene-snowball-2.3.2.

jar

asm.jar http://asm.objectweb.org/license.html

all purpose Java bytecode manipulation and

analysis framework
Castor

Globus Toolkit

Bouncy Castle Crypto APIs

Open Permis

Apache WSS4J

Spring

castor-1.2.jar http://www.castor.org/license.html

cog-axis.jar http://www.globus.org/toolkit/legal/4.
cog-jglobus.jar o/

jce-jdk13-125.jar http://www.bouncycastle.org/licence.
html

wsrf_core.jar http://www.openpermis.org
wsrf_core_stubs.jar /BSDlicenceKent.txt

wsséj.jar http://ws.apache.org/wss4j/license.
html
spring.jar Spring LICENSE

The following table lists the required NCICB/caBIG Libraries.

Library

caGrid Software Libraries

EVS API Libaries

Associated JARs

caGrid-ServiceSecurityProvider-client-1.2.jar
caGrid-ServiceSecurityProvider-common-1.2.
jar
caGrid-ServiceSecurityProvider-stubs-1.2.jar
caGrid-core-1.2.jar
caGrid-metadata-common-1.2.jar
caGrid-metadata-data-1.2.jar
caGrid-metadata-security-1.2.jar
caGrid-metadatautils-1.2.jar

evsapi42-beans.jar
evsapi42-framework.jar

LexEVS Grid Service Client Library = LexEVSGridService-client.jar

LexEVS Grid Service Stubs
LexEVS Grid Service Common
LexEVS Grid Service Service
LexEVS Grid Service Tests

caCORE SDK Library

LexEVS API lexbig.jar

Custom Castor Serializer

Downloads

LexEVSGridService-stubs.jar
LexEVSGridService-common.jar
LexEVSGridService-service.jar
LexEVSGridService-tests.jar

sdk-client-framework.jar

castor-bean-serializer.jar

For your convenience, the required libraries are available for download here:

lexevs42-gridsrvc-libs.jar.

http://ws.apache.org/axis

http://xerces.apache.org/xerces-j

http://lucene.apache.org/

http://asm.objectweb.org/

http://www.castor.org/index.html

http://www.bouncycastle.org/

http://www.openpermis.org/

http://ws.apache.org/wss4j/

http://www.springframework.org

To programmatically access the LexEVS API Grid Service, these libraries need to be added to your local classpath.

http://www.ogsa-dai.ac.uk/documentation/ogsadai-wsi-2.2/thirdparty/axis-jars.LICENSE
http://ws.apache.org/axis
http://www.ogsa-dai.ac.uk/documentation/ogsadai-wsi-2.2/thirdparty/xerces.LICENSE
http://xerces.apache.org/xerces-j
http://www.apache.org/licenses/LICENSE-2.0
http://lucene.apache.org/
http://asm.objectweb.org/license.html
http://asm.objectweb.org/
http://www.castor.org/license.html
http://www.castor.org/index.html
http://www.globus.org/toolkit/legal/4.0/
http://www.globus.org/toolkit/legal/4.0/
http://www.bouncycastle.org/licence.html
http://www.bouncycastle.org/licence.html
http://www.bouncycastle.org/
http://www.openpermis.org/BSDlicenceKent.txt
http://www.openpermis.org/BSDlicenceKent.txt
http://www.openpermis.org/
http://ws.apache.org/wss4j/license.html
http://ws.apache.org/wss4j/license.html
http://ws.apache.org/wss4j/
http://www.apache.org/licenses/LICENSE-2.0
http://www.springframework.org
https://cbiit-download.nci.nih.gov/evs/LexEVS/v4.2/Grid/Release/lexevs42-gridsrvc-libs.jar

Code Examples

Example Client and Service Calls and SOAP Messages

See TestClient.zip

Example APl Usage

Example 1: Searching for concepts in NCI Thesaurus containing the string "Gene"

Java Code Snippet

//Create a Connection to the Gid Service
LexBl GServiceGid | bs = new LexBI GServi ceG i dAdapt er (gri dServi ceURL) ;

/1 Set up the Codi ngSchenel dentification object to define the Coding Schene
Codi ngSchenel denti fication csid = new Codi ngSchenel dentification();
csid. set Name("NCl Thesaurus");

/1 Get the CodedNodeSet for that Codi ngScheme (This returns a CodedNodeSet Service Context)
CodedNodeSet Gid cnsg = | bs. get Codi ngScheneConcepts(csid, null);
/| get Codi ngSchenmeConcepts is a Gid Service Call

//Set the text to match

MatchCriteria matchText = new MatchCriteria();

mat chText . set Text (" Gene");

/I Define a SearchDesignationOption, if any

Sear chDesi gnati onOpti on searchQption = new Sear chDesi gnati onOption();

// Choose an algorithmto do the natching
Ext ensi onl dentification matchAl gorithm = new Extensionldentification();
mat chAl gorit hm set LexBl GExt ensi onNanme("cont ai ns");

/] Chose a | anguage
Languagel denti ficati on | anguage = new Languagel denti fication();
| anguage. setldentifier("en");

//Restrict the CodedNodeSet
cnsg.restrict Tovat chi ngDesi gnati ons(mat chText, searchOption, matchAl gorithm | anguage);
//restrictToMatchi ngDesignations is a Gid Service Call

//Create a SetResolutionPolicy to handle the details of Resolving the CodedNodeSet
//Here, we will set the Maxi mum nunber of Concepts returned to 10.

Set Resol utionPolicy resolvePolicy = new Set Resol uti onPolicy();

resol vePol i cy. set Maxi nunTToRet ur n(10) ;

/1 Do the resol ve
Resol vedConcept Ref erencelLi st rcrlist = cnsg.resol veTolLi st (resol vePolicy);
/lresolveToList is a Gid Service Call

//Use the returned Resol vedConcept Ref erenceList to print sone details about the concepts found
Resol vedConcept Ref erence[] rcref = rcrlist.get Resol vedConcept Ref erence();
for (int i =0; i <rcref.length; i++) {
Systemout.printin(rcref[i].getConcept Code());
Systemout.println(rcref[i].get ReferencedEntry().
get Presentation()[0].get Text().getContent());

Error Handling

Error Connecting to LexEVS Grid Service

When connecting through the Java Client, j ava. net . Connect Excepti on, an or g. apache. axi s. t ypes. URI . Mal f or mredURI Except i on may be
thrown upon an unsuccessful attempt to connect.

https://cbiit-download.nci.nih.gov/evs/LexEVS/v4.2/Grid/Release/TestClient.zip

A Mal f or medURI Except i on is thrown in the case if a poorly-formed URL string. In this case, the exception is thrown before an attempt to connect is
even made.

If the URL is well-formed, proper connection is tested. If the connection attempt fails, a Connect Except i on is thrown containing the reason for the failure.

Java Code

try{
LexBI GServi ceG i dAdapt er | bsg = new LexBI GServi ceG i dAdapt er

("http://1ocal host: 8080/ wsrf/services/cagrid/ LexEVSG i dService");
} catch(java. net. Connect Exception e){
/1 Error Connecting
e.printStackTrace();
} catch(org. apache. axi s. types. URl . Mal f or nredURI Exception e){
/1 URL Syntax Error
e.printStackTrace();

This example shows a typical connection to the LexEVS Grid Service, with the two potential Exceptions being caught and handled as necessary.

LexEVS Errors
LexEVS errors will be forwarded through the Distributed LexEVS layer and then on to the Grid layer. Input parameters, along with any other LexEVS (or

Distributed LexEVS) errors will be detected on the server, not the client, and forwarded. All Generic LexEVS (or Distributed LexEVS) errors will be
forwarded via a RemoteException, with the cause of the error and underlying LexEVS error message included.

Invalid Service Context Access

Service Context Services are not meant to be called directly. If the client attempts to do so, an or g. LexGri d. LexBI G cagri d. LexEVSG'i dSer vi ce.
CodedNodeSet . st ubs. t ypes. | nval i dSer vi ceCont ext Access Exception will be thrown. This indicates a call was made to a Service Context
without obtaining a Service Context Reference via the Main Service. Refer to the Service Contexts and State section in the Design and Architecture Guide
for more information.

Security Issues

LexEVS Grid Service Security

Certain vocabulary content accessible through the LexEVS Grid Service may require extra authorization to access. Each client is required to supply its
own access credentials via Security Tokens. These Security Tokens are implemented by a SecurityToken object:

Nanme: SecurityToken
Nanmespace: gne://caCORE. caCORE/ 3. 2/ gov. ni h. nci . evs. security
Package: gov.nih.nci.evs.security

Accessing Secure Content
A client establishes access to a secured vocabulary via the following Grid Service Calls:

1. Connect to the LexEVS caGrid Service

LexBl GServiceGid | bs = new LexBI GServi ceG i dAdapter (url);

2. Build an org. LexGri d. LexBl G Dat aMbdel . cagri d. Codi ngSchenel denti fi cati onto hold the Coding Scheme name.

Codi ngSchenel denti fi cati on codi ngScheme = new Codi ngSchenel denti fication();
codi ngScherne. set Nane " codi ngSchene";

3. Buildagov. ni h. nci . evs. security. SecurityTokencontaining the security information for the desired Coding Scheme.

SecurityToken token = new SecurityToken();
t oken. set AccessToken("securityToken");

4. Invoke the LexEVS caGrid service as follows:

https://wiki.nci.nih.gov/display/LexEVS/LexEVS+5.0+Design+and+Architecture+Guide#LexEVS5.0DesignandArchitectureGuide-ServiceContextsandState

LexBl GServiceGid | bsg = | bs. set SecurityToken(codi ngSchene, token);

This will return a reference to a new "LexBIGServiceGrid" instance that is associated with the security properties that were passed in.

@ Note

It is important to note that the Grid Service set Securi t yToken returns an or g. LexGri d. LexBl G cagri d. LexEVSGri dServi ce. st ubs.
types. LexEVSG i dSer vi ceRef er ence. LexEVSG i dSer vi ceRef er ence object. This reference must be used to access the secured
vocabularies.

Implementation

Each call to "setSecurityToken" sets up a secured connection to Distributed LeXEVS with the access privileges included in the SecurityToken parameter.
The LexEVSGridServiceReference that is returned to the client contains a unique key identifier to the secure connection that has been created on the
server. All subsequent calls the client makes through this LexEVSGridServiceReference will be made securely. If additional SecurityTokens are passed in
through the "setSecurityToken" Grid Service, the additional security will be added and maintained.

The "setSecurityToken" Grid Service is a stateful service. This means that after the client sets a SecurityToken, any subsequent call will be applied to that
SecurityToken.

Secure connections are not maintained on the server indefinitely, but are based on load conditions. The server will allow 30 unique secure connections to
be set up for clients without any time limitations. As additional requests for secure connections are received by the server, connections will be released by
the server on an 'oldest first' basis. No connection, however, may be released prior to 5 minutes after its creation.

If no SecurityTokens are passed in by the client, a non-secure Distributed LexEVS connection will be used. The server maintains one (and only one) un-
secured Distributed LexEVS connection that is shared by any client not requesting security.

@ Note

All non-secured information accessed by the LexEVS Grid Service is publicly available from NCICB and users are expected to follow the
licensing requirements currently in place for accessing and using NCI EVS information.

LexEVS Data Grid Service API

The LexEVS Data Grid Service

The LexEVS Data Grid Service is a standard caGrid Data service based on the LexEVS 2009 Model.

caGrid Data Service Documentation

For complete documentation on caGrid Data Services, see caGrid Data Service Documentation.

Querying the System

To query the LexEVS Data Grid Service, use the standard caGrid CQL query method to compose queries. See caGrid Data Service API Documentation
for more information.

Example LexEVS queries follow.

Query for a Concept with a Specific Code

Example: Concept: C12345

Java Code Snippet

<CQLQuery xm ns="http://CQL. caBl G 1/ gov. ni h.nci.cagrid. CQLQuery">
<Target name="org.LexG i d.concepts. Concept">
<Attribute name="_entityCode" val ue="Cl12345" predi cate="EQUAL_TO'/>
</ Tar get >

</ CQLQuery>

Query for a Concept with Specific Presentation Text

Example: A concept with a namespace 'SNOMED Clinical Terms' that contains a Presentation equal to 'Heart'

https://wiki.nci.nih.gov/display/LexEVS/LexEVS+5.0+Design+and+Architecture+Guide#LexEVS5.0DesignandArchitectureGuide-LexGridModel
http://cagrid.org/display/dataservices/Home
http://cagrid.org/display/dataservices12/Client+API

Java Code Snippet

<nsl: CQLQuery xnm ns:nsl1="http://CQ. caBl G 1/ gov. ni h. nci.cagrid. CQLQuery" >
<nsl: Target name="org.LexGid.concepts.Entity">
<nsl: G oup | ogi cRel ati on="AND">
<nsl: Associ ation nane="org. LexGid.concepts. Presentation" rol eName="_presentationList">
<nsl: Group | ogi cRel ati on="AND">
<nsl: Associ ati on nane="org. LexG i d. commonTypes. Text" rol eNanme="_val ue">
<nsl: G- oup | ogi cRel ati on="AND"'>
<nsl:Attribute nane="_content" predicate="EQUAL_TO' val ue="Heart"/>
</ nsl: G oup>
</ nsl: Associ ati on>
</ nsl: G oup>
</ nsl: Associ ati on>
<nsl:Attribute nanme="_entityCodeNanespace" predi cate="EQUAL_TO' val ue="SNOVED d i ni cal Terns"/>
</ nsl: G oup>
</nsl: Target>

</ nsl: CQLQuery>

Restrict Results to Specific Attributes

Example: Retrieve all of the 'locallds' of any 'SupportedAssociation' in the system.

Java Code Snippet

<nsl: CQLQuery xml ns:nsl="http://CQL. caBl G 1/ gov. nih.nci.cagrid. CQLQuery">
<nsl: Target nanme="org.LexG i d. nam ng. SupportedAssoci ati on"/>
<nsl: QueryModifier countOnly="false">
<nsl:DistinctAttribute> |localld</nsl:Di stinctAttribute>
</ nsl: QueryModifier>
</ nsl: CQLQuery>

	LexEVS 5.0 Programmer's Guide

