NIH | National Cancer Institute | NCI Wiki  

Contents of this Page
Summary
Description of the profile

An artifact description associates a resource with normative definitions of value specifiers. A value specifier includes a collection of value sets. A value set is defined in terms of its structure and semantics. A property-value pair construct binds an artifact description to the semantics of a value set within a given execution context.

A value specifier consists of

  • a collection of value sets with associated property-value pairs, pointers to such value sets, or pointers to descriptions that eventually resolve to value sets that describe the component;
  • an optional identifier that would allow the value set to be defined, accessed, and reused elsewhere;
  • provenance information that identifies the party (individual, role, or organization) that has responsibility for assigning the value sets to any description component;
  • an optional source of the value set, if appropriate and meaningful, e.g. if a particular data source is mandated.

Architectural implications of bindings include capabilities for:

  • semantic models that provide normative descriptions of the utilized terms, where the models may range from a simple dictionary of terms to an ontology showing complex relationships and capable of supporting enhanced reasoning;
  • mechanisms to support the storage, referencing, and access to these semantic models;
  • configuration management mechanisms to capture the normative description of each semantic model and to apply a unique identifier in a manner consistent with an identified versioning scheme;
  • one or more mechanisms to support the storage, referencing, and access to conversion relationships between semantic models, and the mechanisms to carry out such conversions.

Bind models to data types and value sets.

Data Type, terminology, vocabulary models.

Provide terminology and value set binding.

Develop usage scenarios and context for the information.

Bind Models specializes capabilities architecturally implied by its associated concepts of Artifact , Change , Semantic Model . The implied architectural capabilities are described in the following paragraphs.

Artifact An artifact is a managed resource within the Semantic Infrastructure.

An artifact is associated with the following capabilities:

  • descriptions to enable the artifact to be visible, where the description includes a unique identifier for the artifact and a sufficient, and preferably a machine processible, representation of the meaning of terms used to describe the artifact, its functions, and its effects;
  • one or more discovery mechanisms that enable searching for artifacts that best meet the search criteria specified by the service participant; where the discovery mechanism will have access to the individual artifact descriptions, possibly through some repository mechanism;
  • accessible storage of artifacts and artifact descriptions, so service participants can access, examine, and use the artifacts as defined.

Change Artifact descriptions change over time and their contents will reflect changing needs and context.

Architectural implications of change on the Semantic Infrastructure are reflected in the following capabilities:

  • mechanisms to support the storage, referencing, and access to normative definitions of one or more versioning schemes that may be applied to identify different aggregations of descriptive information, where the different schemes may be versions of a versioning scheme itself;
  • configuration management mechanisms to capture the contents of the each aggregation and apply a unique identifier in a manner consistent with an identified versioning scheme;
  • one or more mechanisms to support the storage, referencing, and access to conversion relationships between versioning schemes, and the mechanisms to carry out such conversions.

Semantic Model Artifact Descriptions make use of defined semantics, where the semantics may be used for categorization or providing other property and value information for description classes.

Architectural implications of semantics on the Semantic Infrastructure are reflected in the following capabilities:

  • semantic models that provide normative descriptions of the utilized terms, where the models may range from a simple dictionary of terms to an ontology showing complex relationships and capable of supporting enhanced reasoning. This is a refinement of the Artifact metadata capability.
  • mechanisms to support the storage, referencing, and access to these semantic models. This is a refinement of the Artifact store capability.
  • configuration management mechanisms to capture the normative description of each semantic model and to apply a unique identifier in a manner consistent with an identified versioning scheme. This is a refinement of the Change configurationManagement capability.
  • one or more mechanisms to support the storage, referencing, and access to conversion relationships between semantic models, and the mechanisms to carry out such conversions.
Capabilities
Requirements traceability

Requirement

Source

Capability

Metadata about terminology services should include; descriptions of the algorithms/methods using controlled vocabularies, keyword assignments to inputs and outputs, description of domains/subdomains service serves for using controlled vocabularies

Gap Analysis::Service::064 - Terminology Service Metadata

terminologyModel

Support complex data types as required by the HL7 V3 standard. Due to the large installed base of HL7 V2 compliant products support datatypes defined in the V2 specification.

Gap Analysis::Transform::093 - HL7 Complex Data Types

dataTypesModel

The ISO-11179 metadata specification specifies that a concept definition should be applied to each data element concept that is rigorous, noncircular, and granular enough to separate the definition of the concept in question from a closely related concept. When the concept definition that is applied to a data element concept is so specific that it attempts to disambiguate not just related concepts, but different uses of the same concept, it creates a situation of early binding of the concept definition that prevents its reuse in a broader manner. In the case of a domain analysis model that is meant to be abstract, this early binding prevents the reuse of domain analysis attributes across a broad range of use cases and leads to segregation of an individual concept into multiple sub concepts usable only in extremely narrow use cases, outside the scope of a domain analysis model representation.

Gap Analysis::BRIDG::BRIDG-2 - Handle ISO-11179 specification handling of early binding of attribute context

dataTypesModel
terminologyModel

In a diverse information environment, semantics must be used to clearly indicate the meaning of data. This requirement is expected to be addressed by the Semantic Infrastructure, although there will be a touchpoint between the caGrid 2.0 and the Semantic Infrastructure to annotate data with semantics. Integration with the Semantic Infrastructure will enable reasoning, semantic query, data mediation (for example, ad hoc data transformation) and other powerful capabilities. Data semantics are captured in the Semantic Infrastructure and the platform will leverage the Semantic Infrastructure interfaces for reasoning and analysis. Link to use case satisfied from caGRID 2.0 Roadmap: The oncologist accesses the TCGA database to search for de-identified glioblastoma tumor data that is similar to the patient data exported from the hospital medical record. During this search, the semantics of the data fields are leveraged to indicate matches between TCGA data fields and the hospital medical record data fields.

Semantic Infrastructure Requirements::caGRID 2.0 Platform and Terminology Integration::Data Semantics

dataTypesModel
terminologyModel

Service Oriented Architecture is an architectural paradigm for organizing and utilizing distributed capabilities that may be under the control of different ownership domains. Consequently, it is important that organizations that plan to engage in service interactions adopt governance policies and procedures sufficient to ensure that there is standardization across both internal and external organizational boundaries to promote the effective creation and use of SOA-based services. SOA governance requires numerous architectural capabilities on the Semantic Infrastructure: Governance is expressed through policies and assumes multiple use of focused policy modules that can be employed across many common circumstances This is elaborated in the inherited Policy profile. Governance requires that the participants understand the intent of governance, the structures created to define and implement governance, and the processes to be followed to make governance operational. This is provided by capabilities specialized from the inherited Management Profile. Governance policies are made operational through rules and regulations. This is provided by the following capabilities, most of which are specializations of the inherited Artifact Profile: * descriptions to enable the rules and regulations to be visible, where the description includes a unique identifier and a sufficient, and preferably a machine process-able, representation of the meaning of terms used to describe the rules and regulations; * one or more discovery mechanisms that enable searching for rules and regulations that may apply to situations corresponding to the search criteria specified by the service participant; where the discovery mechanism will have access to the individual descriptions of rules and regulations, possibly through some repository mechanism; * accessible storage of rules and regulations and their respective descriptions, so service participants can understand and prepare for compliance, as defined. * SOA services to access automated implementations of the Governance Processes. Governance implies management to define and enforce rules and regulations.. This is elaborated in the inherited Management profile. Governance relies on metrics to define and measure compliance. This is elaborated in the inherited Metric profile.

Semantic Profile::OASIS SOA::Governance Model

discovery from inherited abstract profile Artifactidentity from inherited abstract profile Artifactmetadata from inherited abstract profile Artifactstore from inherited abstract profile Artifact

Conformance testing leverages the artifact and service metadata to validate that an implementation adequately addresses the requirements stated in the service specification. An example of service requirement is the ability to specify a response time in the specification (design time) and validate that this response time is valid for an implementation of the service. Aadditional test points include but are not limited to binding to specific terminologies and domain models.

Semantic Infrastructure Requirements::Conformance Testing::Search and Access Conformance Statements

dataTypesModel
terminologyModel

A service description is an artifact, usually document-based, that defines or references the information needed to use, deploy, manage and otherwise control a service. This includes not only the information and behavior models associated with a service to define the service interface but also includes information needed to decide whether the service is appropriate for the current needs of the service consumer. Thus, the service description will also include information such as service reachability, service functionality, and the policies and contracts associated with a service. A service description artifact may be a single document or it may be an interlinked set of documents. Architectural implications of service description on the Semantic Infrastructure are reflected in the following functional decomposition: * Description will change over time and its contents will reflect changing needs and context. This is elaborated in the inherited Change profile. * Description makes use of defined semantics, where the semantics may be used for categorization or providing other property and value information for description classes. This is elaborated in the inherited Semantic Model profile. * Descriptions include reference to policies defining conditions of use and optionally contracts representing agreement on policies and other conditions. This is elaborated in the inherited Policy profile. * Descriptions include references to metrics which describe the operational characteristics of the subjects being described. This is elaborated in the inherited Metrics profile. * Descriptions of the interactions are important for enabling auditability and repeatability, thereby establishing a context for results and support for understanding observed change in performance or results. This is elaborated in the inherited Interaction profile. * Descriptions may capture very focused information subsets or can be an aggregate of numerous component descriptions. Service description is an example of a likely aggregate for which manual maintenance of all aspects would not be feasible. This is elaborated in the inherited Composition profile. * Descriptions provide up-to-date information on what a resource is, the conditions for interacting with the resource, and the results of such interactions. As such, the description is the source of vital information in establishing willingness to interact with a resource, reachability to make interaction possible, and compliance with relevant conditions of use. This is elaborated in the inherited Interoperability profile. Policy capabilities are specialization of Artifact capabilities.

Semantic Profile::OASIS SOA::Service Description Model

versioning from inherited abstract profile ChangeconfigurationManagement from inherited abstract profile Changetransition from inherited abstract profile Changediscovery from inherited abstract profile Artifactidentity from inherited abstract profile Artifactmetadata from inherited abstract profile Artifactstore from inherited abstract profile ArtifactsemanticConversion from inherited abstract profile Semantic Model

One of the key requirements for participants interacting with each other in the context of a SOA is achieving visibility: before services can interoperate, the participants have to be visible to each other using whatever means are appropriate. The Reference Model analyzes visibility in terms of awareness, willingness, and reachability. Visibility in a SOA ecosystem has the following architectural implications on mechanisms providing support for awareness, willingness, and reachability: Mechanisms providing support for awareness will likely have the following minimum capabilities: * creation of Description, preferably conforming to a standard Description format and structure; * publishing of Description directly to a consumer or through a third party mediator; * discovery of Description, preferably conforming to a standard for Description discovery; * notification of Description updates or notification of the addition of new and relevant Descriptions; * classification of Description elements according to standardized classification schemes. In a SOA ecosystem with complex social structures, awareness may be provided for specific communities of interest. The architectural mechanisms for providing awareness to communities of interest will require support for: * policies that allow dynamic formation of communities of interest; * trust that awareness can be provided for and only for specific communities of interest, the bases of which is typically built on keying and encryption technology. The architectural mechanisms for determining willingness to interact will require support for: * verification of identity and credentials of the provider and/or consumer; * access to and understanding of description; * inspection of functionality and capabilities; * inspection of policies and/or contracts. The architectural mechanisms for establishing reachability will require support for: * the location or address of an endpoint; * verification and use of a service interface by means of a communication protocol; * determination of presence with an endpoint which may only be determined at the point interaction but may be further aided by the use of a presence protocol for which the endpoints actively participate.

Semantic Profile::OASIS SOA::Service Visibility Model

discovery from inherited abstract profile Artifact

Static models include a variety of models with different representations.

Semantic Infrastructure Requirements::Artifact Management::Static Models

dataTypesModel
terminologyModel

configurationManagement
Description

Mechanisms to support the storage, referencing, and access to normative definitions of one or more versioning schemes that may be applied to identify different aggregations of descriptive information, where the different schemes may be versions of a versioning scheme itself.

Requirements addressed
Overview of possible operations
dataTypesModel
Description

Data types Model maintenance

Support complex data types as required by the HL7 V3 standard. Due to the large installed base of HL7 V2 compliant products support datatypes defined in the V2 specification.

Requirements addressed
Overview of possible operations
discovery
Description

One or more discovery mechanisms that enable searching for artifacts that best meet the search criteria specified by the service participant; where the discovery mechanism will have access to the individual artifact descriptions, possibly through some repository mechanism.

Requirements addressed
Overview of possible operations
identity
Description

Descriptions which include a unique identifier for the artifact.

Requirements addressed
Overview of possible operations
metadata
Description

A representation of the meaning of terms used to describe the artifact, its functions, and its effects.

Requirements addressed
Overview of possible operations
provenance
Description

While the Resource identity provides the means to know which subject and subject description are being considered, Provenance as related to the Description class provides information that reflects on the quality or usability of the subject. Provenance specifically identifies the entity (human, defined role, organization, ...) that assumes responsibility for the resource being described and tracks historic information that establishes a context for understanding what the resource provides and how it has changed over time. Responsibilities may be directly assumed by the Stakeholder who owns a Resource or the Owner may designate Responsible Parties for the various aspects of maintaining the resource and provisioning it for use by others. There may be more than one entity identified under Responsible Parties; for example, one entity may be responsible for code maintenance while another is responsible for provisioning of the executable code. The historical aspects may also have multiple entries, such as when and how data was collected and when and how it was subsequently processed, and as with other elements of description, may provide links to other assets maintained by the Resource owner.

Requirements addressed
Overview of possible operations
semanticConversion
Description

One or more mechanisms to support the storage, referencing, and access to conversion relationships between semantic models, and the mechanisms to carry out such conversions.

Requirements addressed
Overview of possible operations
store
Description

Accessible storage of artifacts and artifact descriptions, so service participants can access, examine, and use the artifacts as defined.

Requirements addressed
Overview of possible operations
terminologyModel
Description

Terminology Model maintenance

Requirements addressed
Overview of possible operations
transition
Description

One or more mechanisms to support the storage, referencing, and access to conversion relationships between versioning schemes, and the mechanisms to carry out such conversions.

Requirements addressed
Overview of possible operations
versioning
Description

Configuration management mechanisms to capture the contents of the each aggregation and apply a unique identifier in a manner consistent with an identified versioning scheme.

Requirements addressed
Overview of possible operations
  • No labels